導(dǎo)語:數(shù)學(xué)不可比擬的永久性和萬能性及他對(duì)時(shí)間和文化背景的獨(dú)立行是其本質(zhì)的直接后果。下面是小編為大家準(zhǔn)備的關(guān)于數(shù)學(xué)的手抄報(bào)內(nèi)容,歡迎大家閱讀借鑒!
2016年數(shù)學(xué)手抄報(bào)內(nèi)容大全(1)
2016年數(shù)學(xué)手抄報(bào)內(nèi)容大全(2)
2016年數(shù)學(xué)手抄報(bào)內(nèi)容大全(3)
【數(shù)學(xué)的發(fā)展】
魏、晉時(shí)期出現(xiàn)的玄學(xué),不為漢儒經(jīng)學(xué)束縛,思想比較活躍;它詰辯求勝,又能運(yùn)用邏輯思維,分析義理,這些都有利于數(shù)學(xué)從理論上加以提高。吳國趙爽注《周髀算經(jīng)》,漢末魏初徐岳撰《九章算術(shù)》注,魏末晉初劉徽撰《九章算術(shù)》注、《九章重差圖》都是出現(xiàn)在這個(gè)時(shí)期。趙爽與劉徽的工作為中國古代數(shù)學(xué)體系奠定了理論基礎(chǔ)。
趙爽是中國古代對(duì)數(shù)學(xué)定理和公式進(jìn)行證明與推導(dǎo)的最早的數(shù)學(xué)家之一。他在《周髀算經(jīng)》書中補(bǔ)充的“勾股圓方圖及注”和“日高圖及注”是十分重要的數(shù)學(xué)文獻(xiàn)。在“勾股圓方圖及注”中他提出用弦圖證明勾股定理和解勾股形的五個(gè)公式;在“日高圖及注”中,他用圖形面積證明漢代普遍應(yīng)用的重差公式,趙爽的工作是帶有開創(chuàng)性的,在中國古代數(shù)學(xué)發(fā)展中占有重要地位。
劉徽約與趙爽同時(shí),他繼承和發(fā)展了戰(zhàn)國時(shí)期名家和墨家的思想,主張對(duì)一些數(shù)學(xué)名詞特別是重要的數(shù)學(xué)概念給以嚴(yán)格的定義,認(rèn)為對(duì)數(shù)學(xué)知識(shí)必須進(jìn)行“析理”,才能使數(shù)學(xué)著作簡(jiǎn)明嚴(yán)密,利于讀者。他的《九章算術(shù)》注不僅是對(duì)《九章算術(shù)》的方法、公式和定理進(jìn)行一般的解釋和推導(dǎo),而且在論述的過程中有很大的發(fā)展。劉徽創(chuàng)造割圓術(shù),利用極限的思想證明圓的面積公式,并首次用理論的方法算得圓周率為 157/50和 3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恒為2:1,解決了一般立體體積的關(guān)鍵問題。在證明方錐、圓柱、圓錐、圓臺(tái)的體積時(shí),劉徽為徹底解決球的體積提出了正確途徑。
東晉以后,中國長期處于戰(zhàn)爭(zhēng)和南北分裂的狀態(tài)。祖沖之父子的工作就是經(jīng)濟(jì)文化南移以后,南方數(shù)學(xué)發(fā)展的具有代表性的工作,他們?cè)趧⒒兆ⅰ毒耪滤阈g(shù)》的基礎(chǔ)上,把傳統(tǒng)數(shù)學(xué)大大向前推進(jìn)了一步。他們的數(shù)學(xué)工作主要有:計(jì)算出圓周率在3.1415926~3.1415927之間;提出祖暅原理;提出二次與三次方程的解法等。
據(jù)推測(cè),祖沖之在劉徽割圓術(shù)的基礎(chǔ)上,算出圓內(nèi)接正6144邊形和正12288邊形的面積,從而得到了這個(gè)結(jié)果。他又用新的方法得到圓周率兩個(gè)分?jǐn)?shù)值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計(jì)算方面,比西方領(lǐng)先約一千年之久;
祖沖之之子祖暅總結(jié)了劉徽的有關(guān)工作,提出“冪勢(shì)既同則積不容異”,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖暅公理。祖暅應(yīng)用這個(gè)公理,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進(jìn)了數(shù)學(xué)的發(fā)展。唐初王孝通的《緝古算經(jīng)》,主要討論土木工程中計(jì)算土方、工程分工、驗(yàn)收以及倉庫和地窖的計(jì)算問題,反映了這個(gè)時(shí)期數(shù)學(xué)的情況。王孝通在不用數(shù)學(xué)符號(hào)的情況下,立出數(shù)字三次方程,不僅解決了當(dāng)時(shí)社會(huì)的需要,也為后來天元術(shù)的建立打下基礎(chǔ)。此外,對(duì)傳統(tǒng)的勾股形解法,王孝通也是用數(shù)字三次方程解決的。
唐初封建統(tǒng)治者繼承隋制,656年在國子監(jiān)設(shè)立算學(xué)館,設(shè)有算學(xué)博士和助教,學(xué)生30人。由太史令李淳風(fēng)等編纂注釋《算經(jīng)十書》,作為算學(xué)館學(xué)生用的課本,明算科考試亦以這些算書為準(zhǔn)。李淳風(fēng)等編纂的《算經(jīng)十書》,對(duì)保存數(shù)學(xué)經(jīng)典著作、為數(shù)學(xué)研究提供文獻(xiàn)資料方面是很有意義的。他們給《周髀算經(jīng)》、《九章算術(shù)》以及《海島算經(jīng)》所作的注解,對(duì)讀者是有幫助的。隋唐時(shí)期,由于歷法的需要,天算學(xué)家創(chuàng)立了二次函數(shù)的內(nèi)插法,豐富了中國古代數(shù)學(xué)的內(nèi)容。
算籌是中國古代的主要計(jì)算工具之一,它具有簡(jiǎn)單、形象、具體等優(yōu)點(diǎn),但也存在布籌占用面積大,運(yùn)籌速度加快時(shí)容易擺弄不正而造成錯(cuò)誤等缺點(diǎn),因此很早就開始進(jìn)行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術(shù)上是重要的改革。尤其是“珠算”,它繼承了籌算五升十進(jìn)與位值制的優(yōu)點(diǎn),又克服了籌算縱橫記數(shù)與置籌不便的缺點(diǎn),優(yōu)越性十分明顯。但由于當(dāng)時(shí)乘除算法仍然不能在一個(gè)橫列中進(jìn)行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應(yīng)用。
【數(shù)學(xué)名言】
1、無限!再也沒有其他問題如此深刻地打動(dòng)過人類的心靈。--D 希爾伯特
2、我們能夠期待,隨著教育與娛樂的發(fā)展,將有更多的人欣賞音樂與繪畫。但是,能夠真正欣賞數(shù)學(xué)的人數(shù)是很少的。--貝爾斯
3、天才是不足恃的,聰明是不可靠的,要想順手揀來的偉大科學(xué)發(fā)明是不可想象的。--華羅庚
4、數(shù)學(xué)受到高度尊崇的另一個(gè)原因在于:恰恰是數(shù)學(xué),給精密的自然科學(xué)提供了無可置疑的的可靠保證,沒有數(shù)學(xué),它們無法達(dá)到這樣的可靠程度。--愛因斯坦
5、數(shù)學(xué)是科學(xué)的女王,而數(shù)論是數(shù)學(xué)的女王。--高斯
6、數(shù)學(xué)發(fā)明創(chuàng)造的動(dòng)力不是推理,而是想象力的發(fā)揮。--德摩根
7、數(shù)學(xué)的領(lǐng)域中,提出問題的藝術(shù)比解答問題的藝術(shù)更為重要。--康扥爾
8、數(shù)學(xué)不可比擬的永久性和萬能性及他對(duì)時(shí)間和文化背景的獨(dú)立行是其本質(zhì)的直接后果。--A 埃博
9、數(shù)學(xué),科學(xué)的女皇;數(shù)論,數(shù)學(xué)的女皇。 --C F 高斯
10、數(shù)無形時(shí)少直覺,形少數(shù)時(shí)難入微,數(shù)與形,本是相倚依,焉能分作兩邊飛。--華羅庚
11、數(shù)論是人類知識(shí)最古老的一個(gè)分支,然而他的一些最深?yuàn)W的秘密與其最平凡的真理是密切相連的。--史密斯
12、上帝創(chuàng)造了整數(shù),所有其余的數(shù)都是人造的。 --L 克隆內(nèi)克
13、如果誰不知道正方形的對(duì)角線同邊是不可通約的量,那他就不值得人的稱號(hào)。--柏拉圖