- 相關(guān)推薦
有關(guān)三對(duì)角矩陣的數(shù)值分析
摘要
3對(duì)角矩陣是1類很重要的特殊矩陣,在數(shù)學(xué)和物理學(xué)中有廣泛的應(yīng)用.文章將根據(jù)3對(duì)角矩陣的特征,用待定系數(shù)法求解3對(duì)角線性方程組的數(shù)值解,并與常用的LU分解法從理論分析和數(shù)據(jù)實(shí)驗(yàn)兩方面進(jìn)行比較,結(jié)果表明,兩者的時(shí)間復(fù)雜性前者稍差,而精度兩者則相當(dāng),最后寫(xiě)出兩者的C程序并運(yùn)行結(jié)果.接下來(lái)用1種簡(jiǎn)單和容易實(shí)現(xiàn)的方法求出3對(duì)角矩陣的行列式,再利用其逆矩陣可以分解成兩個(gè)很特殊的矩陣的乘積,給出1種算法實(shí)現(xiàn)3對(duì)角矩陣的逆的簡(jiǎn)便計(jì)算。
關(guān)鍵字:3對(duì)角矩陣;待定系數(shù)法;數(shù)值解;行列式;逆
Abstract
The tridiagonal matrix is a kind of matrix that with important special,it has widespread applications in mathematics and physics.In this paper,based on the characteristic of the tridiagonal matrix,the method of hypothetical coefficient is used for the numerical solution of tridiagonal system of linear equations,this method will be compared with the LU resolving
method through theory analysis and data experiment,compared the two methods,we will find the latter is better than the former in time complexity slightly ,but the precision is matched with each other,finally write the C procedures for the two methods and get results. The next part,an easy algorithm will be used to compute the determinant of the tridiagonal matrix.the inverse can be divided into two so special matrices that we can compute out the explicit inverse via an algorithm.
Keywords:tridiagonal matrix;numerical solution;determinant;inverse
目錄
前言…………………………………………………………………………………………………………1
1 兩類求解3對(duì)角方程組的數(shù)值方法……………………………………………………………………2
1.1 問(wèn)題引入 ………………………………………………………………………………………2
1.2 待定系數(shù)法求解3對(duì)角方程組 ………………………………………………………………2
1.3 LU分解法求解3對(duì)角方程組…………………………………………………………………7
1. 4 算法性能分析 …………………………………………………………………………………9
2 關(guān)于3對(duì)角矩陣的行列式 ……………………………………………………………………………12
2.1 問(wèn)題引入………………………………………………………………………………………12
2.2 方法提出………………………………………………………………………………………12
2.3 算法性能分析…………………………………………………………………………………13
3 3對(duì)角矩陣逆的數(shù)值解法 ……………………………………………………………………………15
3.1 問(wèn)題引入………………………………………………………………………………………15
3.2 算法推導(dǎo)及實(shí)現(xiàn) ……………………………………………………………………………15
3.3 程序與數(shù)值例子………………………………………………………………………………17
結(jié)論 ………………………………………………………………………………………………………20
參考文獻(xiàn) …………………………………………………………………………………………………20
致謝 ………………………………………………………………………………………………………21
【三對(duì)角矩陣的數(shù)值分析】相關(guān)文章:
矩陣對(duì)角化及其應(yīng)用03-07
數(shù)學(xué)畢業(yè)論文-矩陣可對(duì)角化的判定條件及推廣03-04
基于IFE矩陣的CPM分析03-21
BP算法在矩陣分析基礎(chǔ)上的改進(jìn)03-07
數(shù)值計(jì)算中Bcd碼校驗(yàn)電路的分析與設(shè)計(jì)03-18
矩陣方程的自反和反自反矩陣解03-07