国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

高中數(shù)學(xué)說課稿

時間:2021-08-12 15:02:14 高中說課稿 我要投稿

關(guān)于高中數(shù)學(xué)說課稿范文集合九篇

  在教學(xué)工作者實際的教學(xué)活動中,常常需要準(zhǔn)備說課稿,借助說課稿可以更好地組織教學(xué)活動。說課稿應(yīng)該怎么寫才好呢?下面是小編為大家整理的高中數(shù)學(xué)說課稿9篇,僅供參考,希望能夠幫助到大家。

關(guān)于高中數(shù)學(xué)說課稿范文集合九篇

高中數(shù)學(xué)說課稿 篇1

  各位老師,大家好!

  我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.

  一、教材分析

  集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).

  二、教學(xué)目標(biāo)

  根據(jù)上述對教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.

  2. 過程與方法目標(biāo)

  應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

  3. 情感態(tài)度價值觀目標(biāo)

  使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價值觀.培養(yǎng)學(xué)生獨立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點和難點

  重點:根據(jù)上述對教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點為:集合的含義,集合的表示方法.

  難點:考慮到學(xué)生已有的知識基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析

 。1)生理特點:高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.

 。2)心理特點:高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.

  (3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法

  根據(jù)上面的分析,從高中生的心理特點和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實際情況與認(rèn)知障礙,按照突出重點,突破難點,本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化。

  根據(jù)以上分析,我對本節(jié)課的教學(xué)過程作如下安排:

  1.引入課題

  先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解

 。1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.

 。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.

  (3)為了化解教學(xué)難點,我將結(jié)合具體的例子,講解列舉法與描述法.

 。4)為了加強(qiáng)學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實際問題的能力,我將講解三個不同題型、不同難度的例題. 3.課堂練習(xí)

  為了使得學(xué)生掌握等差數(shù)列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.

  4.歸納小結(jié)

  完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對本節(jié)課的內(nèi)容做一個總結(jié),強(qiáng)調(diào)重點. 5.布置作業(yè)

  為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計

  結(jié)合中學(xué)黑板的特點,我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實際情況靈活掌握,隨機(jī)發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系

  數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.

  一 、教學(xué)內(nèi)容分析

  集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)

  習(xí),學(xué)生將學(xué)會使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象,發(fā)展運用數(shù)學(xué)語言進(jìn)行交流的能力.

  本章集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時也是下一節(jié)學(xué)習(xí)集合之間的運算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.

  本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。

  二、學(xué)情分析

  本節(jié)課是學(xué)生進(jìn)入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對來說比較濃厚,有利于學(xué)習(xí)活動的展開。而集合對于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個挑戰(zhàn)。

  根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點,確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點如下:

  三、教學(xué)目標(biāo): 知識與技能目標(biāo):

  (1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;

 。3)能使用Venn圖表達(dá)集合之間的包含關(guān)系 過程與方法目標(biāo):

 。1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對照實數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

 。2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象的過程,體會集合語言,發(fā)展運用數(shù)學(xué)語言進(jìn)行交流的能力;

  情感、態(tài)度、價值觀目標(biāo):

 。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實和數(shù)學(xué)問題中的意義;

  (2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結(jié)合的思想。

  四、本節(jié)課教學(xué)的重、難點:

  重點:(1)幫助學(xué)生由具體到抽象地認(rèn)識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點:集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過程設(shè)計

  1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣

  我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時;當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時;當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時;當(dāng)學(xué)生能夠?qū)W以致用時;當(dāng)學(xué)生得到鼓勵與信任時,他們學(xué)得最好。數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)

  2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:

  具體實例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

  此環(huán)節(jié)設(shè)置了三個具體實例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個例子為有限集數(shù)集,最為簡單直觀,對學(xué)生初步認(rèn)識子集,理解子集的概念很有幫助;第二個例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個例子,借助多媒體演示動畫,幫助學(xué)生體會“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運用集合語言進(jìn)行交流,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果我都給予積極的評價。

  3、概念的剖析

  (1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

  (2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。

  這里引入了許多新的符號,對初學(xué)者來說容易混淆,是一個易錯點,因此我在這里設(shè)置了一個填空小練習(xí):

  0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

  并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。

  4、概念的深化——集合的相等與真子集

  問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個元素,它與集合A之間又可能是什么關(guān)系呢?

高中數(shù)學(xué)說課稿 篇2

  尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內(nèi)容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過程及教學(xué)特點等四個方面具體說明。

  一、教學(xué)背景的分析

  1.教材分析

  直線的方程是學(xué)生在初中學(xué)習(xí)了一次函數(shù)的概念和圖象及高中學(xué)習(xí)了直線的斜率后進(jìn)行研究的。直線的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究解析幾何學(xué)的開始,對后續(xù)研究兩條直線的位置關(guān)系、圓的方程、直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內(nèi)容之一。“直線的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。同時在這一節(jié)中利用坐標(biāo)法來研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎(chǔ)和學(xué)習(xí)習(xí)慣都有待加強(qiáng)。又由于剛開始學(xué)習(xí)解析幾何,第一次用坐標(biāo)法來求曲線的方程,在學(xué)習(xí)過程中,會出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學(xué)生在探究問題的能力,合作交流的意識等方面更有待加強(qiáng)。

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3.教學(xué)目標(biāo)

  (1)了解直線的方程的概念和直線的點斜式方程的推導(dǎo)過程及方法;

  (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學(xué)會準(zhǔn)確地使用直線的點斜式、斜截式方程 ;

  (3)從實例入手,通過類比、推廣、特殊化等,使學(xué)生體會從特殊到一般再到特殊的認(rèn)知規(guī)律;

  (4)提倡學(xué)生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關(guān)系等活動,培養(yǎng)學(xué)生主動探究知識、合作交流的意識,并初步了解數(shù)形結(jié)合在解析幾何中的應(yīng)用。

  4. 教學(xué)重點與難點

  (1)重點: 直線點斜式、斜截式方程的特點及其初步應(yīng)用。

  (2)難點:直線的方程的概念,點斜式方程的推導(dǎo)及點斜式、斜截式方程的應(yīng)用。

  二、教法學(xué)法分析

  1.教法分析:根據(jù)學(xué)情,為了能調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“實例引導(dǎo)的啟發(fā)式”問題教學(xué)法。幫助學(xué)生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關(guān)系,進(jìn)而將直線的問題轉(zhuǎn)化為直線方程的問題,通過對直線的方程的研究,最終解決有關(guān)直線的一些簡單的問題。另外可以恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。

  2.學(xué)法分析:學(xué)生從問題中嘗試、總結(jié)、質(zhì)疑、運用,體會學(xué)習(xí)數(shù)學(xué)的樂趣;通過推導(dǎo)直線的點斜式方程的學(xué)習(xí),要了解用坐標(biāo)法求方程的思想;通過一個點和方向可以確定一條直線,進(jìn)而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉(zhuǎn)化思想。

  下面我就對具體的教學(xué)過程和設(shè)計加以說明:

  三、教學(xué)過程的設(shè)計及實施

  整個教學(xué)過程是由六個問題組成,共分為四個環(huán)節(jié),學(xué)習(xí)或涉及四個概念:

  溫故知新,澄清概念----直線的方程

  深入探究,獲得新知--------點斜式

  拓展知識,再獲新知--------斜截式

  小結(jié)引申,思維延續(xù)--------兩點式

  平面上的點可以用坐標(biāo)表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學(xué)習(xí)的內(nèi)容。

  (一)溫故知新,澄清概念----直線的方程

  問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標(biāo)有何關(guān)系?

  [學(xué)生活動] 通過動手畫圖,思考并嘗試用語言進(jìn)行初步的表述。

  [教師活動] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規(guī)范的語言對方程和直線的方程進(jìn)行描述。

  [設(shè)計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學(xué)生已有的數(shù)學(xué)知識去學(xué)數(shù)學(xué)”,從而突破難點。通過對這個問題的研究,一方面認(rèn)識到以方程的解為坐標(biāo)的點在直線上,另一方面認(rèn)識到直線上的點的坐標(biāo)滿足方程;從而使同學(xué)意識到直線可以由直線上任意一點P(x,y)的坐標(biāo)x和y之間的等量關(guān)系來表示。

  問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。

  (1) 若點P在直線l上從A點開始運動,橫坐標(biāo)增加1時,點P的坐標(biāo)是 ;

  (2)畫出直線l,你能求出直線l的方程嗎?

  (3)若點P在直線l上運動,設(shè)P點的坐標(biāo)為(x,y),你會有什么方法找到x,y滿足的關(guān)系式?

  [學(xué)生活動]學(xué)生獨立思考5分鐘,必要的話可進(jìn)行分組討論、合作交流。

  [教師活動]巡視。肯定學(xué)生的各種方法及大膽嘗試的行為;并引導(dǎo)學(xué)生觀察發(fā)現(xiàn),得到當(dāng)點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

  [設(shè)計意圖]復(fù)習(xí)斜率公式;待定系數(shù)法;初步體會坐標(biāo)法。同時引導(dǎo)學(xué)生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學(xué)簡潔的美感和嚴(yán)謹(jǐn)性。還要指出這樣的事實:當(dāng)點P在直線l上運動時,P的坐標(biāo)(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標(biāo)的點在直線l上。把學(xué)生的思維引到用坐標(biāo)法研究直線的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。

  (二)深入探究,獲得新知----點斜式

  問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。

  ②直線的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?

  [學(xué)生活動] ①學(xué)生敘述,老師板書,強(qiáng)調(diào)斜率公式與點斜式的區(qū)別。 ②指導(dǎo)學(xué)生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當(dāng)直線l的傾斜角α=90°時,斜率k不存在,當(dāng)然不存在點斜式方程;討論k=0的情況;觀察并總結(jié)點斜式方程的特征。

  [設(shè)計意圖] 由特殊到一般的學(xué)習(xí)思路,突破難點,培養(yǎng)學(xué)生的歸納概括能力。通過對這個問題的探究使學(xué)生獲得直線點斜式方程;由②知:當(dāng)直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴(yán)謹(jǐn)性,這時直線l與y軸平行,它上面的每一點的橫坐標(biāo)都等于x0,直線l的方程是:x=x0;通過學(xué)生的觀察討論總結(jié),明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎(chǔ)練習(xí),突破重難點。

  問題四:分別求經(jīng)過點且滿足下列條件的直線的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習(xí)]P95.1、2。

  [學(xué)生活動]學(xué)生獨立完成并展示或敘述,老師點評。

  [設(shè)計意圖]充分用好教材的例題和習(xí)題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學(xué),指導(dǎo)下個環(huán)節(jié)的安排;突破重點內(nèi)容后,進(jìn)入第三環(huán)節(jié)。

  (三)拓展知識,再獲新知----斜截式

  問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。

  (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。

  [學(xué)生活動]學(xué)生獨立完成后口述,教師板書。

  [設(shè)計意圖] 由一般到特殊再到一般,培養(yǎng)學(xué)生的推理能力,同時引出截距的概念及斜截式方程,強(qiáng)調(diào)截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關(guān)系。通過下面的基礎(chǔ)練習(xí),突破重點。

  [練習(xí)]P95.3。

  [設(shè)計意圖]充分用好教材習(xí)題,及時反饋本環(huán)節(jié)的教學(xué)情況,指導(dǎo)下個環(huán)節(jié)的安排。

  (四)小結(jié)引申,思維延續(xù)----兩點式

  課堂小結(jié) 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)

  2、哪些地方還沒有學(xué)好?

  問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。

  (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。

  [學(xué)生活動]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進(jìn)展過程,有時間的話,可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。

  [設(shè)計意圖](1)小題與上一節(jié)的平行綜合,學(xué)生應(yīng)該有思路求出方程;(2)小題解決方法較多,預(yù)設(shè)有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學(xué)生有一些發(fā)散思維的機(jī)會,以及課后學(xué)習(xí)的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準(zhǔn)備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設(shè)計意圖]通過分層作業(yè),做到因材施教,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展。

  四、教學(xué)特點分析

  (一)實例引導(dǎo)。在字母運算、公式推導(dǎo)之前,總是用實例作為鋪墊,使學(xué)生有學(xué)習(xí)知識的可能和興趣,關(guān)注學(xué)困生的成長與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問的方式敘述所學(xué)內(nèi)容,如:1.直角坐標(biāo)系內(nèi)的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負(fù)數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學(xué)過的一次函數(shù)有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話與交流活動。

  (三)注重自主探究。設(shè)計問題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,布設(shè)了由淺入深的學(xué)習(xí)環(huán)境突破重點、難點,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程。設(shè)計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)造充分的探究空間,學(xué)生在交流成果的過程中,高效的完成教學(xué)任務(wù)。

高中數(shù)學(xué)說課稿 篇3

  數(shù)學(xué):人教A版必修3第二章第三節(jié)《變量之間的相關(guān)關(guān)系》說課稿各位老師:

  大家好!我叫***,來自**。我說課的題目是《變量之間的相關(guān)關(guān)系》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第三節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學(xué)習(xí)的主要內(nèi)容就是統(tǒng)計,在前面的章節(jié)中我們已經(jīng)對統(tǒng)計的相關(guān)知識作了大致的了解。本節(jié)課我們要繼續(xù)探討的是變量之間的相關(guān)關(guān)系,它為接下來要學(xué)習(xí)的兩個變量的線性相關(guān)打下基礎(chǔ)。這是一個與現(xiàn)實實際生活聯(lián)系很緊密的知識,在教師的引導(dǎo)下,可使學(xué)生認(rèn)識到在現(xiàn)實世界中存在不能用函數(shù)模型描述的變量關(guān)系,從而體會研究變量之間的相關(guān)關(guān)系的重要性.

  2.教學(xué)的重點和難點

  重點:①通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)直觀認(rèn)識變量間的相關(guān)關(guān)系;

  ②利用散點圖直觀認(rèn)識兩個變量之間的線性關(guān)系;

  難點:①變量之間相關(guān)關(guān)系的理解;②作散點圖和理解兩個變量的正相關(guān)和負(fù)相關(guān)

  二、教學(xué)目標(biāo)分析

  1.知識與技能目標(biāo)

  通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)認(rèn)識變量間的相關(guān)關(guān)系

  2、過程與方法目標(biāo):

  明確事物間的相互聯(lián)系.認(rèn)識現(xiàn)實生活中變量間除了存在確定的關(guān)系外,仍存在大量的非確定性的相關(guān)關(guān)系,并利用散點圖直觀體會這種相關(guān)關(guān)系.

  3、情感態(tài)度與價值觀目標(biāo):

  通過對事物之間相關(guān)關(guān)系的了解,讓學(xué)生們認(rèn)識到現(xiàn)實中任何事物都是相互聯(lián)系的辯證法思想。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的`認(rèn)知水平,在教法上,我采用“問答探究”式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動的主體。

  2。教學(xué)手段:通過多媒體輔助教學(xué),充分調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

  四、教學(xué)過程分析

 、鍐栴}引出:

  請同學(xué)們?nèi)鐚嵦顚懴卤恚ㄔ诳崭裰写颉啊獭保?/p>

  然后回答如下問題:①“你的數(shù)學(xué)成績對你的物理成績有無影響?”②“如果你的數(shù)學(xué)成績好,那么你的物理成績也不會太差,如果你的數(shù)學(xué)成績差,那么你的物理成績也不會太好!睂δ銇碚f,是這樣嗎?同意這種說法的同學(xué)請舉手。

  根據(jù)同學(xué)們回答的結(jié)果,讓學(xué)生討論:我們可以發(fā)現(xiàn)自己的數(shù)學(xué)成績和物理成績存在某種關(guān)系。(似乎就是數(shù)學(xué)好的,物理也好;數(shù)學(xué)差的,物理也差,但又不全對。)教師總結(jié)如下:

  物理成績和數(shù)學(xué)成績是兩個變量,從經(jīng)驗看,由于物理學(xué)習(xí)要用到比較多的數(shù)學(xué)知識和數(shù)學(xué)方法。數(shù)學(xué)成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過一個人的數(shù)學(xué)成績是多少就準(zhǔn)確地斷定他的物理成績能達(dá)到多少。但這兩個變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系。如何通過數(shù)學(xué)成績的結(jié)果對物理成績進(jìn)行合理估計有非常重要的現(xiàn)實意義。

  「設(shè)計意圖」通過對身邊事例的分析,引出我們今天將要學(xué)習(xí)的主要內(nèi)容,由此可以激起學(xué)

  生們的學(xué)習(xí)興趣,為接下來的學(xué)習(xí)打下良好的基礎(chǔ)。

  ㈡探究新知

 、备拍钚纬

  教師提問:“像剛才這種情況在現(xiàn)實生活中是否還有?”學(xué)生們思考之后,請幾位同學(xué)就提出的問題作出回答。老師就舉出的例子,引導(dǎo)學(xué)生作出分析,然后由老師總結(jié)得出相關(guān)關(guān)系的概念。[兩個變量之間的關(guān)系可能是確定的關(guān)系(如:函數(shù)關(guān)系),或非確定性關(guān)系。當(dāng)自變量取值一定時,因變量也確定,則為確定關(guān)系;當(dāng)自變量取值一定時,因變量帶有隨機(jī)性,這種變量之間的關(guān)系稱為相關(guān)關(guān)系。相關(guān)關(guān)系是一種非確定性關(guān)系。]

  「設(shè)計意圖」從現(xiàn)實生活入手,抓住學(xué)生們的注意力,引導(dǎo)學(xué)生分析得出概念,讓學(xué)生真正參與到概念的形成過程中來。

 、蔡骄烤性相關(guān)關(guān)系和其他相關(guān)關(guān)系

  「課件展示」

  例1在一次對人體脂肪和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題:針對于上述數(shù)據(jù)所提供的信息,你認(rèn)為人體的脂肪含量與年齡之間有怎樣的關(guān)系?

  [教師特別向?qū)W生強(qiáng)調(diào)在研究兩個變量之間是否存在某種關(guān)系時,必須從散點圖入手(向?qū)W生介紹什么是散點圖)。并且引導(dǎo)學(xué)生從散點圖上可以得出如下規(guī)律:(幻燈片給出)

 、偃绻械臉颖军c都落在某一函數(shù)曲線上,那么變量之間具有函數(shù)關(guān)系(確定性關(guān)系);②如果所有的樣本點都落在某一函數(shù)曲線的附近,那么變量之間具有相關(guān)關(guān)系(不確定性關(guān)系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關(guān)關(guān)系(不確定性關(guān)系)。

  「設(shè)計意圖」通過對這個典型事例的分析,向?qū)W生們介紹什么是散點圖,并總結(jié)出如何從散點圖上判斷變量之間關(guān)系的規(guī)律。

  下面我們用TI圖形計算器作出這兩個變量的散點圖。

  學(xué)生實驗:先把數(shù)據(jù)中成對出現(xiàn)的兩個數(shù)分別作為橫坐標(biāo)、縱坐標(biāo),把數(shù)據(jù)輸入到表格當(dāng)中(第一列橫坐標(biāo)、第二列縱坐標(biāo));然后,用TI圖形計算器作散點圖:

  [引導(dǎo)學(xué)生觀察作出的散點圖,體會現(xiàn)實生活中兩個變量之間的關(guān)系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關(guān)關(guān)系。]

  「設(shè)計意圖」通過實驗讓學(xué)生們感受散點圖的主要形成過程,并由此引出線性相關(guān)關(guān)系。為后面回歸直線和回歸直線方程的學(xué)習(xí)做好鋪墊。

  「課件展示」四組數(shù)據(jù),請學(xué)生作出散點圖,并觀察每組數(shù)據(jù)的特點。

  根據(jù)四組數(shù)據(jù),學(xué)生作出四個散點圖。

  通過學(xué)生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關(guān)關(guān)系,正負(fù)相關(guān)關(guān)系的概念。

  「設(shè)計意圖」及時鞏固知識,學(xué)生通過親自動手作散點圖,并交流討論,進(jìn)一步加深對散點圖的理解,并由此引出正負(fù)相關(guān)關(guān)系的概念,突破難點。

 、缋}講解,深化認(rèn)識

  「課件展示」

  例2一般說來,一個人的身高越高,他的人就越大,相應(yīng)地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關(guān)系。為了對這個問題進(jìn)行調(diào)查,我們收集了北京市某中學(xué)20xx年高三年級96名學(xué)生的身高與右手一拃長的數(shù)據(jù)如下表。

  (1)根據(jù)上表中的數(shù)據(jù),制成散點圖。你能從散點圖中發(fā)現(xiàn)身高與右手一拃長之間的近似關(guān)系嗎?

 。2)如果近似成線性關(guān)系,請畫出一條直線來近似地表示這種線性關(guān)系。

  (3)如果一個學(xué)生的身高是188cm,你能估計他的一拃大概有多長嗎?

  「設(shè)計意圖」這個例子很容易激起學(xué)生們的學(xué)習(xí)興趣,由此可達(dá)到更好的教學(xué)效果。通過對這道題的解答,使對前面知識的認(rèn)識更加牢固。

 、璺此夹〗Y(jié)、培養(yǎng)能力

  ⑴變量間相關(guān)關(guān)系、線性關(guān)系和正負(fù)相關(guān)關(guān)系

 、迫绾巫錾Ⅻc圖

  「設(shè)計意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),把課堂教學(xué)傳授的知識較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進(jìn)一步培養(yǎng)學(xué)生的歸納概括能力

 、檎n后作業(yè),自主學(xué)習(xí)

  習(xí)題2.31、2

  [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

高中數(shù)學(xué)說課稿 篇4

  一、背景分析

  1、學(xué)習(xí)任務(wù)分析:充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。

  教學(xué)重點:充分條件、必要條件和充要條件三個概念的定義。

  2、學(xué)生情況分析:從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.因此,新教材在第一章的小結(jié)與復(fù)習(xí)中,把學(xué)生的學(xué)習(xí)要求規(guī)定為“初步掌握充要條件”(注意:新教學(xué)大綱的教學(xué)目標(biāo)是“掌握充要條件的意義”),這是比較切合教學(xué)實際的.由此可見,教師在充要條件這一內(nèi)容的新授教學(xué)時,不可拔高要求追求一步到位,而要在今后的教學(xué)中滾動式逐步深化,使之與學(xué)生的知識結(jié)構(gòu)同步發(fā)展完善。

  教學(xué)難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.根據(jù)多年教學(xué)實踐,學(xué)生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結(jié)論,怎么又變成條件了呢?對這學(xué)生難于理解。

  教學(xué)關(guān)鍵:找出A、B,根據(jù)定義判斷A=B與B=A是否成立。教學(xué)中,要強(qiáng)調(diào)先找出A、B,否則,學(xué)生可能會對必要條件難以理解。

  二、教學(xué)目標(biāo)設(shè)計:

 。ㄒ唬┲R目標(biāo):

  1、正確理解充分條件、必要條件、充要條件三個概念。

  2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。

 。ǘ┠芰δ繕(biāo):

  1、培養(yǎng)學(xué)生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。

  2、培養(yǎng)學(xué)生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進(jìn)行歸納,總結(jié)出一般規(guī)律。

 。ㄈ┣楦心繕(biāo):

  1、通過以學(xué)生為主體的教學(xué)方法,讓學(xué)生自己構(gòu)造數(shù)學(xué)命題,發(fā)展體驗獲取知識的感受。

  2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學(xué)們的辯證唯物主義觀點。

  3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學(xué)生自主學(xué)習(xí),勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進(jìn)取的精神。

  三、教學(xué)結(jié)構(gòu)設(shè)計:

  數(shù)學(xué)知識來源于生活實際,生活本身又是一個巨大的數(shù)學(xué)課堂,我在教學(xué)過程中注重把教材內(nèi)容與生活實踐結(jié)合起來,加強(qiáng)數(shù)學(xué)教學(xué)的實踐性,給數(shù)學(xué)找到生活的原型。我對本節(jié)課的數(shù)學(xué)知識結(jié)構(gòu)進(jìn)行創(chuàng)造性地“教學(xué)加工”,在教學(xué)方法上采用了“合作——探索”的開放式教學(xué)模式,使課堂教學(xué)體現(xiàn)“參與式”、“生活化”、“探索性”,保證學(xué)生對數(shù)學(xué)知識的主動獲取,促進(jìn)學(xué)生充分、和諧、自主、個性化的發(fā)展。

  整體思路為:教師創(chuàng)設(shè)情境,激發(fā)興趣,引出課題 引導(dǎo)學(xué)生分析實例,給出定義 例題分析(采用開放式教學(xué)) 知識小結(jié) 擴(kuò)展例題 練習(xí)反饋

  整個教學(xué)設(shè)計的主要特色:

 。1)由生活事例引出課題;

 。2)采用開放式教學(xué)模式;

 。3)擴(kuò)展例題是分析生活中的名言名句,又將數(shù)學(xué)融入生活中。

  努力做到:“教為不教,學(xué)為會學(xué)”;要“授之以魚”更要“授之以漁”。

  四、教學(xué)媒體設(shè)計:

  本節(jié)課是概念課,要避免單一的下定義作練習(xí)模式,應(yīng)該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學(xué),添加了一些與例題相匹配的圖片背景,以激發(fā)學(xué)生的學(xué)習(xí)興趣,另外將學(xué)生的自編題利用多媒體課件展示出來分析,提高了課堂教學(xué)的效率。

  五、教學(xué)過程設(shè)計:

  第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:

  考慮到高一學(xué)生學(xué)習(xí)這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學(xué)生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。

  我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應(yīng)該買多少?他說買3米足夠了。”這樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導(dǎo)學(xué)生得出充分條件的定義。這里要強(qiáng)調(diào)該事件包括:A:有3米布料;B:做一件襯衫夠了。

  第二個事例是:“一人病重,呼吸困難,急診住院接氧氣。”就產(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導(dǎo)學(xué)生得出必要條件的定義。這里要強(qiáng)調(diào)該事件包括:A:接氧氣;B:活了。

  用以上兩個生活中的事例來說明數(shù)學(xué)中應(yīng)研究的概念、關(guān)系,會使學(xué)生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。

  第二,引導(dǎo)學(xué)生分析實例,給出定義。

  在第一部分激發(fā)起學(xué)生的學(xué)習(xí)興趣后,緊接著開展第二部分,引導(dǎo)學(xué)生分析實例,讓學(xué)生從事例中抽象出數(shù)學(xué)概念,得出本節(jié)課所要學(xué)習(xí)的充分條件和必要條件的定義。在引導(dǎo)過程中盡量放慢語速,結(jié)合事例幫助學(xué)生分析。

  得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強(qiáng)對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。

  還應(yīng)指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學(xué)生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。

  當(dāng)兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學(xué)生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認(rèn)識,第三部分再利用具體的數(shù)學(xué)事例來強(qiáng)化。

高中數(shù)學(xué)說課稿 篇5

  一、教材分析

 。ㄒ唬┑匚慌c作用

  《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進(jìn)一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

 。ǘ⿲W(xué)情分析

 。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識 ,已初步形成對數(shù)學(xué)問題的合作探究能力。

  (2)雖然前面學(xué)生已經(jīng)學(xué)會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。

 。3)學(xué)生層次參差不齊,個體差異比較明顯。

  二、目標(biāo)分析

  新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體。

 。ㄒ唬┙虒W(xué)目標(biāo)

 。1)知識與技能

  ①使學(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。

  ②讓學(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。

 。2)過程與方法

  ①讓學(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。

  ②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度與價值觀

  ①通過熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。

 、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。

  ③培養(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。

 。ǘ┲攸c難點

  根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:

  重點:從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)

  難點:從冪函數(shù)的圖象中概括其性質(zhì)。

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。

  1、引導(dǎo)發(fā)現(xiàn)比較法

  因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進(jìn)行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。

  2、借助信息技術(shù)輔助教學(xué)

  由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點,故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。

  3、練習(xí)鞏固討論學(xué)習(xí)法

  這樣更能突出重點,解決難點,使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進(jìn)一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。

 。ǘ⿲W(xué)法

  本節(jié)課主要是通過對冪函數(shù)模型的特征進(jìn)行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。

  由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進(jìn)行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。

  四、教學(xué)過程分析

  (一)教學(xué)過程設(shè)計

 。1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

  問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

  由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

  都是自變量的若干次冪的形式。都是形如

  的函數(shù)。

  揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

 。ㄒ唬┱n堂主要內(nèi)容

  (1)冪函數(shù)的概念

 、賰绾瘮(shù)的定義。

  一般地,函數(shù)

  叫做冪函數(shù),其中x 是自變量,a是常數(shù)。

 、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。

  冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

  指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

 。2)幾個常見冪函數(shù)的圖象和性質(zhì)

  由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格

  根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。

  以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。

  教師講評:冪函數(shù)的性質(zhì).

 、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).

 、谌绻鸻>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).

  ③如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

 、墚(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。

  以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進(jìn)行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

  通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

 。3)當(dāng)堂訓(xùn)練,鞏固深化

  例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。

  例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進(jìn)行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。

  例2是補充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路

  (4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:

 。1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?

 。2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?

 。3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

 。ǘ┳鳂I(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計了以下作業(yè):

 。1)必做題

 。2)選做題

 。ㄈ┌鍟O(shè)計

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。

  五、評價分析

  學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

  謝謝!

高中數(shù)學(xué)說課稿 篇6

  大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。

  一 教材分析

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

  能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  二 教法

  根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點

  三 學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

  四 教學(xué)過程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實踐探究,形成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

 。ǘ┨綄ぬ乩岢霾孪

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

  在三角形中,角與所對的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

 。ㄋ模w納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

  3.運用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

  (五)講解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數(shù)學(xué)說課稿 篇7

  一、教材分析:

  1.教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學(xué)教材數(shù)學(xué)2第一章空間幾何體3節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

  2.教育教學(xué)目標(biāo):

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

  知識與能力:

  (1)了解柱體、錐體、臺體的表面積.

  (2)能用公式求柱體、錐體、臺體的表面積。

 。3)培養(yǎng)學(xué)生空間想象能力和思維能力

  過程與方法:

  讓學(xué)生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學(xué)生對數(shù)學(xué)問題的轉(zhuǎn)化化歸能力。

  情感、態(tài)度與價值觀:

  通過學(xué)習(xí),是學(xué)生感受到幾何體表面積的求解過程,激發(fā)學(xué)生探索、創(chuàng)新意識,增強(qiáng)學(xué)習(xí)積極性。

  3.重點,難點以及確定依據(jù):

  本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點

  教學(xué)重點:柱,錐,臺的表面積公式的推導(dǎo)

  教學(xué)難點:柱,錐,臺展開圖與空間幾何體的轉(zhuǎn)化

  二、教法分析

  1.教學(xué)手段:

  如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟(jié)課的特點:應(yīng)著重采用合作探究、小組討論的教學(xué)方法。

  2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。

  三.學(xué)情分析

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

 。1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散

 。2)動機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力

  最后我來具體談?wù)勥@一堂課的教學(xué)過程:

  四、教學(xué)過程分析

 。1)由一段動畫視頻引入:豐富生動的吸引學(xué)生的注意力,調(diào)動學(xué)生學(xué)習(xí)積極性

 。2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。

 。3)探究問題。完全將主動權(quán)教給學(xué)生,讓學(xué)生主動去探究,得到解決問題的思路,鍛煉學(xué)生動手能力,解決實際問題能力。

 。4)總結(jié)結(jié)論,強(qiáng)化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。

  (5)例題及練習(xí),見學(xué)案。

 。6)布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,

 。7)小結(jié)。讓學(xué)生總結(jié)本節(jié)課的收獲。老師適時總結(jié)歸納。

高中數(shù)學(xué)說課稿 篇8

  各位領(lǐng)導(dǎo)、專家、同仁:您們好!

  我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

  根據(jù)以上分析,確立教學(xué)重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

  二、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點確定教學(xué)目標(biāo)如下:

  知識目標(biāo):

  1、了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系;

  2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;

  3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

  4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

  能力目標(biāo):

  1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點的一一對應(yīng)關(guān)系的認(rèn)識;

  2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點;

  3、能用所學(xué)知識理解新的概念,并能運用概念解決實際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。

  情感目標(biāo):

  1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

  三、重難點突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實際模型,積累了感性認(rèn)識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學(xué)生在作業(yè)中容易犯想當(dāng)然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標(biāo)的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設(shè)計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時容易產(chǎn)生的問題是,不理解“曲線上的點的坐標(biāo)都是方程的解”和“以這個方程的解為坐標(biāo)的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系時各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個關(guān)系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關(guān)系的區(qū)別。

  五、教法分析

  新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡單的教書匠轉(zhuǎn)變?yōu)閷嵺`的研究者,或研究的實踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個基本步驟,重點采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。

  從實例、到類比、到推廣的問題探究,它對激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。

  利用多媒體輔助教學(xué),節(jié)省了時間,增大了信息量,增強(qiáng)了直觀形象性。

  六、學(xué)法分析

  基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動參與,親身實踐,獨立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動參與,親身實踐,獨立思考,與合作探究相結(jié)合,在生生合作,師生互動中,使學(xué)生真正成為知識的發(fā)現(xiàn)者和知識的研究者。

  七、教學(xué)過程分析

  1、感性認(rèn)識階段——以舊帶新、提出課題

高中數(shù)學(xué)說課稿 篇9

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1。2節(jié)

  先對教材進(jìn)行分析

  教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。

  教學(xué)重點:任意角三角函數(shù)的定義

  教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;

  學(xué)情分析:

  學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力

  1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強(qiáng)必須在老師一定的指導(dǎo)下才能進(jìn)行

  針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下

  知識目標(biāo):

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

  能力目標(biāo):

 。1)理解并掌握任意角的三角函數(shù)的定義;

 。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

  德育目標(biāo):

 。1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;

  針對學(xué)生實際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法

  教法學(xué)法:溫故知新,逐步拓展

  (1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴(kuò)展內(nèi)容,發(fā)展新知識,形成新的概念;

  (2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強(qiáng)趣味性。

  教學(xué)過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強(qiáng),逐步推進(jìn)

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標(biāo)系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義

  給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學(xué)過程安排

  引入: 復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學(xué)生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系, 把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標(biāo)系里, 那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?

  引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示, 從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了

  從而得到

  知識點一:任意一個角的三角函數(shù)的定義

  提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。

  精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

 。ù祟}由學(xué)生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學(xué)生分析討論,得出結(jié)論

  知識點二:三個三角函數(shù)的定義域

  同時教師強(qiáng)調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負(fù)即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個知識點

  知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系

  由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結(jié)回顧課堂內(nèi)容

  課堂作業(yè)和課外作業(yè)以加強(qiáng)知識的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

  課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設(shè)計(見PPT)

【關(guān)于高中數(shù)學(xué)說課稿范文集合九篇】相關(guān)文章:

關(guān)于高中數(shù)學(xué)說課稿范文集合五篇08-14

關(guān)于高中數(shù)學(xué)說課稿范文集合9篇08-13

關(guān)于高中數(shù)學(xué)說課稿范文集合8篇08-10

關(guān)于高中數(shù)學(xué)說課稿集合10篇07-19

關(guān)于高中數(shù)學(xué)說課稿范文集合七篇08-18

高中數(shù)學(xué)經(jīng)典說課稿范文06-24

關(guān)于高中數(shù)學(xué)說課稿范文集合十篇08-17

關(guān)于高中數(shù)學(xué)說課稿模板集合八篇08-07

關(guān)于高中數(shù)學(xué)說課稿模板集合六篇07-24