數(shù)學(xué)建模論文模板
在學(xué)習(xí)和工作的日常里,大家都有寫論文的經(jīng)歷,對(duì)論文很是熟悉吧,借助論文可以有效訓(xùn)練我們運(yùn)用理論和技能解決實(shí)際問(wèn)題的的能力。你知道論文怎樣才能寫的好嗎?下面是小編為大家整理的數(shù)學(xué)建模論文模板,歡迎閱讀,希望大家能夠喜歡。
數(shù)學(xué)建模論文模板1
數(shù)學(xué)建模隨著人類的進(jìn)步,科技的發(fā)展和社會(huì)的日趨數(shù)字化,應(yīng)用領(lǐng)域越來(lái)越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來(lái)越豐富。強(qiáng)調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識(shí)對(duì)推動(dòng)素質(zhì)教育的實(shí)施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過(guò)數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點(diǎn),把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問(wèn)題進(jìn)行剖析,希望得到同仁的幫助和指正。
一、數(shù)學(xué)應(yīng)用題的特點(diǎn)
我們常把來(lái)源于客觀世界的實(shí)際,具有實(shí)際意義或?qū)嶋H背景,要通過(guò)數(shù)學(xué)建模的方法將問(wèn)題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的一類數(shù)學(xué)問(wèn)題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點(diǎn):
第一、數(shù)學(xué)應(yīng)用題的本身具有實(shí)際意義或?qū)嶋H背景。這里的實(shí)際是指生產(chǎn)實(shí)際、社會(huì)實(shí)際、生活實(shí)際等現(xiàn)實(shí)世界的各個(gè)方面的實(shí)際。如與課本知識(shí)密切聯(lián)系的源于實(shí)際生活的應(yīng)用題;與模向?qū)W科知識(shí)網(wǎng)絡(luò)交匯點(diǎn)有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會(huì)市場(chǎng)經(jīng)濟(jì)、環(huán)境保護(hù)、實(shí)事政治等有關(guān)的應(yīng)用題等。
第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的`方法,使所求問(wèn)題數(shù)學(xué)化,即將問(wèn)題轉(zhuǎn)化成數(shù)學(xué)形式來(lái)表示后再求解。
第三、數(shù)學(xué)應(yīng)用題涉及的知識(shí)點(diǎn)多。是對(duì)綜合運(yùn)用數(shù)學(xué)知識(shí)和方法解決實(shí)際問(wèn)題能力的檢驗(yàn),考查的是學(xué)生的綜合能力,涉及的知識(shí)點(diǎn)一般在三個(gè)以上,如果某一知識(shí)點(diǎn)掌握的不過(guò)關(guān),很難將問(wèn)題正確解答。
二、數(shù)學(xué)應(yīng)用題如何建模
第一層次:直接建模。
根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型,注解圖為:
第二層次:直接建模。可利用現(xiàn)成的數(shù)學(xué)模型,但必須概括這個(gè)數(shù)學(xué)模型,對(duì)應(yīng)用題進(jìn)行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進(jìn)一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。
第三層次:多重建模。對(duì)復(fù)雜的關(guān)系進(jìn)行提煉加工,忽略次要因素,建立若干個(gè)數(shù)學(xué)模型方能解決問(wèn)題。
第四層次:假設(shè)建模。要進(jìn)行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車流量問(wèn)題,假設(shè)車流平穩(wěn),沒(méi)有突發(fā)事件等才能建模。
三、建立數(shù)學(xué)模型應(yīng)具備的能力
從實(shí)際問(wèn)題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問(wèn)題從而解決實(shí)際問(wèn)題,這一數(shù)學(xué)全過(guò)程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強(qiáng)弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時(shí)也體現(xiàn)一個(gè)學(xué)生的綜合能力。
1提高分析、理解、閱讀能力。
2強(qiáng)化將文字語(yǔ)言敘述轉(zhuǎn)譯成數(shù)學(xué)符號(hào)語(yǔ)言的能力。
3增強(qiáng)選擇數(shù)學(xué)模型的能力。
4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。
數(shù)學(xué)建模論文模板2
隨著社會(huì)的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來(lái)越廣泛,尤其是計(jì)算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會(huì)各個(gè)領(lǐng)域中的實(shí)際問(wèn)題的應(yīng)用越來(lái)越深入。本文筆者簡(jiǎn)要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。
1什么是數(shù)學(xué)建模思想
所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過(guò)程,也就是說(shuō)用公式、符號(hào)和圖表等數(shù)學(xué)語(yǔ)言來(lái)刻畫(huà)和描述一個(gè)實(shí)際問(wèn)題,再經(jīng)過(guò)計(jì)算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報(bào)、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語(yǔ)對(duì)一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來(lái)解決問(wèn)題的一種思想。
在新形勢(shì)下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無(wú)法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。
2數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義
(1)數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛。如今數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)以來(lái),就有不少理論成果來(lái)自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問(wèn)題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎(jiǎng)?wù),其中擁有?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計(jì)占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者都運(yùn)用了數(shù)學(xué)方法來(lái)研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時(shí)數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測(cè)序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型?梢(jiàn)數(shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對(duì)其他領(lǐng)域的發(fā)展起著重要的推動(dòng)作用。
。2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識(shí)的講解和傳授,對(duì)知識(shí)點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識(shí)點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識(shí),可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題,這樣就使數(shù)學(xué)活了起來(lái),而不是死的理論知識(shí)。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會(huì)數(shù)學(xué)的價(jià)值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動(dòng)力,讓學(xué)生主動(dòng)參與學(xué)習(xí)而非被動(dòng)學(xué)習(xí),取得的教學(xué)效果會(huì)更好。
。3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時(shí)代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價(jià)值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會(huì)學(xué)生掌握簡(jiǎn)單的理論知識(shí),并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識(shí)。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問(wèn)題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價(jià)值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識(shí)。
3高校在應(yīng)用數(shù)學(xué)建模思想中出現(xiàn)的問(wèn)題
。1)教師在教學(xué)過(guò)程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開(kāi)展大學(xué)數(shù)學(xué)類課程時(shí),仍然只是停留在數(shù)學(xué)知識(shí)的教學(xué)方面,并沒(méi)有對(duì)學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對(duì)日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識(shí)到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少?梢(jiàn)多數(shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識(shí)及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。
(2)開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動(dòng)較少。雖然數(shù)學(xué)建模思想得到了越來(lái)越廣泛的應(yīng)用,但是在高校中實(shí)際開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計(jì)算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過(guò)程中并沒(méi)有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開(kāi)展的有關(guān)數(shù)學(xué)建模競(jìng)賽和活動(dòng)并不多,宣傳力度也不夠,無(wú)法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值,更無(wú)法參與到數(shù)學(xué)建;顒(dòng)中去。
(3)學(xué)生對(duì)數(shù)學(xué)的態(tài)度和觀念還未改變,對(duì)數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對(duì)大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒(méi)有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒(méi)有見(jiàn)識(shí)到數(shù)學(xué)的應(yīng)用性,覺(jué)得數(shù)學(xué)是一門純理論的課程,沒(méi)有實(shí)用價(jià)值。同時(shí)很多學(xué)生對(duì)數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識(shí)和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺(jué)得數(shù)學(xué)沒(méi)有用,也沒(méi)有深入學(xué)習(xí)的意義。
4如何加強(qiáng)數(shù)學(xué)建模思想和大學(xué)數(shù)學(xué)類課程的融合
(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建!、“概率論與數(shù)理統(tǒng)計(jì)”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過(guò)程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對(duì)于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對(duì)計(jì)算機(jī)軟件和語(yǔ)言的學(xué)習(xí),系統(tǒng)性地對(duì)數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法解決社會(huì)實(shí)際問(wèn)題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對(duì)生活問(wèn)題和科學(xué)問(wèn)題的深入研究,主動(dòng)結(jié)合自己的課程理論知識(shí)和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個(gè)學(xué)習(xí)過(guò)程中去。對(duì)于非數(shù)學(xué)領(lǐng)域的問(wèn)題,要啟發(fā)學(xué)生運(yùn)用計(jì)算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問(wèn)題。
。2)多開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開(kāi)設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會(huì),為學(xué)生拓展知識(shí)領(lǐng)域,為其解決該領(lǐng)域的問(wèn)題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過(guò)選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問(wèn)題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問(wèn)題僅僅靠經(jīng)濟(jì)學(xué)的知識(shí)是無(wú)法解決的,像貸款計(jì)算這樣的問(wèn)題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來(lái)才能解決實(shí)際問(wèn)題。
。3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值。學(xué)生是教學(xué)過(guò)程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開(kāi)設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對(duì)數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的.參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時(shí),在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對(duì)社會(huì)實(shí)際生活的重要作用,轉(zhuǎn)變他們對(duì)數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對(duì)數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。
。4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識(shí)在生活中的應(yīng)用問(wèn)題上,而不是將知識(shí)與實(shí)際生活割裂開(kāi)來(lái)。同時(shí)在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對(duì)數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對(duì)實(shí)際問(wèn)題的邏輯分析、簡(jiǎn)化、抽象并運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)的能力。也就是說(shuō)教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識(shí)的人才。
。5)多開(kāi)展數(shù)學(xué)建;顒(dòng)和競(jìng)賽,提高學(xué)生參與性。在高校內(nèi)部要多開(kāi)展跟數(shù)學(xué)有關(guān)的活動(dòng)和競(jìng)賽以及專家講座等,一方面加強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的認(rèn)識(shí),另一方面也提高了學(xué)生的參與性。通過(guò)專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價(jià)值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過(guò)數(shù)學(xué)建模競(jìng)賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺(tái)。同時(shí),競(jìng)賽也可以讓學(xué)生在競(jìng)賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過(guò)讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對(duì)模型應(yīng)用的直觀性認(rèn)識(shí),促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。
5結(jié)束語(yǔ)
總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對(duì)于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問(wèn)題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。
數(shù)學(xué)建模論文模板3
【摘要】提出數(shù)學(xué)建模的基本概念,通過(guò)考查獨(dú)立院校大學(xué)生數(shù)學(xué)建模競(jìng)賽發(fā)展?fàn)顩r,針對(duì)獨(dú)立學(xué)院人才培養(yǎng)目標(biāo)以及學(xué)生的特點(diǎn),從多個(gè)方面闡述獨(dú)立院校大學(xué)生數(shù)學(xué)建模教育存在的突出問(wèn)題,在此基礎(chǔ)上,提出了獨(dú)立大學(xué)數(shù)學(xué)建模教學(xué)改革策略和方法。
【關(guān)鍵詞】獨(dú)立院校;數(shù)學(xué)建模;改革
一、數(shù)學(xué)建模的基本概念
數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問(wèn)題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問(wèn)題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來(lái)解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來(lái)狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過(guò)程。
二、獨(dú)立院校數(shù)學(xué)建模課程現(xiàn)狀
大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯?wèn)題,主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問(wèn)題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無(wú)暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問(wèn)題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問(wèn)題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過(guò)參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問(wèn)題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開(kāi)在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫的,對(duì)于獨(dú)立院校的學(xué)生來(lái)說(shuō),這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過(guò)了學(xué)生的接受能力。
三、改革的具體措施
。ㄒ唬┳寣W(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開(kāi)設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問(wèn)題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)?梢栽诙嚅_(kāi)展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問(wèn)題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開(kāi)設(shè)的數(shù)學(xué)建?邕x課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問(wèn)題的能力起到了很好的作用。由于學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過(guò)程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過(guò)專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問(wèn)題的研究。在學(xué)習(xí)中遇到的專業(yè)問(wèn)題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說(shuō)來(lái)獨(dú)立院校的數(shù)學(xué)建模課程的開(kāi)設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒(méi)有了解,這時(shí)候適合開(kāi)設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問(wèn)題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開(kāi)設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問(wèn)題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。
四、加強(qiáng)教學(xué)組織與學(xué)校管理
。ㄒ唬┨岣邤(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過(guò)程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的'專業(yè)水平,還要求教師具備解決實(shí)際問(wèn)題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問(wèn)學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來(lái)到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長(zhǎng)知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無(wú)法接收這些模型。在教學(xué)過(guò)程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過(guò)具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問(wèn)題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建;顒(dòng)。全面開(kāi)展數(shù)學(xué)建模活動(dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)校可以定期的開(kāi)展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開(kāi)展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建;顒(dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問(wèn)題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。
【參考文獻(xiàn)】
。1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[J].中國(guó)大學(xué)教育.20xx.
。2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[J].工科數(shù)學(xué).20xx:162.
[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[J].科技創(chuàng)新導(dǎo)報(bào).20xx:162.
作者:李雙 單位:湖北文理學(xué)院理工學(xué)院
數(shù)學(xué)建模論文模板4
[論文關(guān)鍵詞]建模地位 建模實(shí)踐 建模意識(shí)
[論文摘要]建模能力的培養(yǎng),不只是通過(guò)實(shí)際問(wèn)題的解決才能得到提高,更主要的是要培養(yǎng)一種建模意識(shí),解題模型的構(gòu)造也是一條培養(yǎng)建模方法的很好的途徑。
一、建模地位
數(shù)學(xué)是關(guān)于客觀世界模式和秩序的科學(xué),數(shù)、形、關(guān)系、可能性、最大值、最小值和數(shù)據(jù)處理等等,是人類對(duì)客觀世界進(jìn)行數(shù)學(xué)把握的最基本反映。數(shù)學(xué)方法越來(lái)越多地被用于環(huán)境科學(xué)、自然資源模擬、經(jīng)濟(jì)學(xué)和社會(huì)學(xué),甚至還有心理學(xué)和認(rèn)知科學(xué),其中建模方法尤為突出。數(shù)學(xué)教育家漢斯·弗賴登塔爾認(rèn)為:“數(shù)學(xué)來(lái)源于現(xiàn)實(shí),存在于現(xiàn)實(shí),并且應(yīng)用于現(xiàn)實(shí),數(shù)學(xué)過(guò)程應(yīng)該是幫助學(xué)生把現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的過(guò)程!薄缎抡n程標(biāo)準(zhǔn)》中強(qiáng)調(diào):“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng),教師要緊密聯(lián)系學(xué)生的生活環(huán)境,要重視從學(xué)生的生活實(shí)踐經(jīng)驗(yàn)和已有的知識(shí)中學(xué)習(xí)數(shù)學(xué)和理解數(shù)學(xué)!
因此,不管從社會(huì)發(fā)展要求還是從新課標(biāo)要求來(lái)看,培養(yǎng)學(xué)生的建構(gòu)意識(shí)和建模方法成了高中數(shù)學(xué)教學(xué)中極其重要內(nèi)容之一。在新課標(biāo)理念指導(dǎo)下,同時(shí)結(jié)合自己多年的教學(xué)實(shí)踐,我認(rèn)為:培養(yǎng)建模能力,不能簡(jiǎn)單地說(shuō)是培養(yǎng)將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力,課堂教學(xué)中更重要的是要培養(yǎng)學(xué)生的建模意識(shí)。以下我就從一堂習(xí)題課的片段加以說(shuō)明我的觀點(diǎn)及認(rèn)識(shí)。
二、建模實(shí)踐
片段、用模型構(gòu)造法解計(jì)數(shù)問(wèn)題(計(jì)數(shù)原理習(xí)題課)。
計(jì)數(shù)問(wèn)題情景多樣,一般無(wú)特定的模式和規(guī)律可循,對(duì)思維能力和分析能力要求較高,如能抓住問(wèn)題的條件和結(jié)構(gòu),利用適當(dāng)?shù)哪P蛯?wèn)題轉(zhuǎn)化為常規(guī)問(wèn)題進(jìn)行求解,則能使之更方便地獲得解決,從而也能培養(yǎng)學(xué)生建模意識(shí)。
例1:從集合{1,2,3,…,20}中任選取3個(gè)不同的數(shù),使這3個(gè)數(shù)成等差數(shù)列,這樣的等差數(shù)列可以有多少個(gè)?
解:設(shè)a,b,c∈N,且a,b,c成等差數(shù)列,則a+c=2b,即a+c是偶數(shù),因此從1到20這20個(gè)數(shù)字中任選出3個(gè)數(shù)成等差數(shù)列,則第1個(gè)數(shù)與第3個(gè)數(shù)必同為偶數(shù)或同為奇數(shù),而1到20這20個(gè)數(shù)字中有10個(gè)偶數(shù),10個(gè)奇數(shù)。當(dāng)?shù)?和第3個(gè)數(shù)選定后,中間數(shù)被唯一確定,因此,選法只有兩類:
(1)第1和第3個(gè)數(shù)都是偶數(shù),有幾種選法;(2)第1和第3個(gè)數(shù)都是奇數(shù),有幾種選法;于是,選出3個(gè)數(shù)成等差數(shù)列的個(gè)數(shù)為:2=180個(gè)。
解后反思:此題直接求解困難較大,通過(guò)模型之間轉(zhuǎn)換,將原來(lái)求等差數(shù)列個(gè)數(shù)的問(wèn)題,轉(zhuǎn)化為從10個(gè)偶數(shù)和10個(gè)奇數(shù)每次取出兩個(gè)數(shù)且同為偶數(shù)或同為奇數(shù)的排列數(shù)的模型,使問(wèn)題迎刃而解。
例2:在一塊并排10壟的田地中,選擇2壟分別種植A,B兩種不同的作物,每種作物種植一壟,為了有利于作物生長(zhǎng),要求A,B兩種作物的間隔不小于6壟,則不同的選壟方法共有幾種(用數(shù)字作答)。
解法1:以A,B兩種作物間隔的壟數(shù)分類,一共可以分成3類:
(1)若A,B之間隔6壟,選壟辦法有3種;(2)若A,B之間隔7壟,選壟辦法有2種;(3)若A,B之間隔8壟,選壟辦法有種;故共有不同的選壟方法3+2+=12種。
解法2:只需在A,B兩種作物之間插入“捆綁”成一個(gè)整體的6壟田地,就可以滿足題意。因此,原問(wèn)題可以轉(zhuǎn)化為:在一塊并排4壟的田地中,選擇2壟分別種植A,B兩種作物有 種,故共有不同的選壟方法=12種。
解后反思:解法1根據(jù)A,B兩種作物間隔的壟數(shù)進(jìn)行分類,簡(jiǎn)單明了,但注意要不重不漏。解法2把6壟田地“捆綁”起來(lái),將原有模型進(jìn)行重組,使有限制條件的問(wèn)題變?yōu)闊o(wú)限制條件的問(wèn)題,極大地方便了解題。
三、建模認(rèn)識(shí)
從以上片段可以看到,其實(shí)數(shù)學(xué)建模并不神秘,只要我們老師有建模意識(shí),幾乎每章節(jié)中都有很好模型素材。
現(xiàn)代心理學(xué)的研究表明,對(duì)許多學(xué)生來(lái)說(shuō),從抽象到具體的轉(zhuǎn)化并不比具體到抽象遇到的困難少,學(xué)生解數(shù)學(xué)應(yīng)用題的最常見(jiàn)的困難是不會(huì)將問(wèn)題提煉成數(shù)學(xué)問(wèn)題,即不會(huì)建模。在新課標(biāo)要求下我們?cè)鯓硬拍苡行囵B(yǎng)學(xué)生建模意識(shí)呢?我認(rèn)為我們不僅要認(rèn)識(shí)到新課標(biāo)下建模的地位和要有建模意識(shí),還應(yīng)該要認(rèn)識(shí)什么是數(shù)學(xué)建模及它有哪些基本步驟、類型。以下是對(duì)數(shù)學(xué)建模的一些粗淺認(rèn)識(shí)。
所謂數(shù)學(xué)建模就是通過(guò)建立某個(gè)數(shù)學(xué)模型來(lái)解決實(shí)際問(wèn)題的方法。數(shù)學(xué)模型可以是某個(gè)圖形,也可以是某個(gè)數(shù)學(xué)公式或方程式、不等式、函數(shù)關(guān)系式等等。從這個(gè)意義上說(shuō),以上一堂課就是很好地建模實(shí)例。
一般的數(shù)學(xué)建模問(wèn)題可能較復(fù)雜,但其解題思路是大致相同的,歸納起來(lái),數(shù)學(xué)建模的一般解題步驟有:
1.問(wèn)題分析:對(duì)所給的實(shí)際問(wèn)題,分析問(wèn)題中涉及到的對(duì)象及其內(nèi)在關(guān)系、結(jié)構(gòu)或性態(tài),鄭重分析需要解決的問(wèn)題是什么,從而明確建模目的。
2.模型假設(shè):對(duì)問(wèn)題中涉及的對(duì)象及其結(jié)構(gòu)、性態(tài)或關(guān)系作必要的簡(jiǎn)化假設(shè),簡(jiǎn)化假設(shè)的目的是為了用盡可能簡(jiǎn)單的數(shù)學(xué)形式建立模型,簡(jiǎn)化假設(shè)必須基本符合實(shí)際。
3.模型建立:根據(jù)問(wèn)題分析及模型假設(shè),用一個(gè)適當(dāng)?shù)臄?shù)學(xué)形式來(lái)反映實(shí)際問(wèn)題中對(duì)象的`性態(tài)、結(jié)構(gòu)或內(nèi)在聯(lián)系。
4.模型求解:對(duì)建立的數(shù)學(xué)模型用數(shù)學(xué)方法求出其解。
5.把模型的數(shù)學(xué)解翻譯成實(shí)際解,根據(jù)問(wèn)題的實(shí)際情況或各種實(shí)際數(shù)據(jù)對(duì)模型及模型解的合理性、適用性、可靠性進(jìn)行檢驗(yàn)。
從建模方法的角度可以給出高中數(shù)學(xué)建模的幾種重要類型:
1.函數(shù)方法建模。當(dāng)實(shí)際問(wèn)題歸納為要確定某兩個(gè)量(或若干個(gè)量)之間的數(shù)量關(guān)系時(shí),可通過(guò)適當(dāng)假設(shè),建立這兩個(gè)量之間的某個(gè)函數(shù)關(guān)系。
2.數(shù)列方法建!,F(xiàn)實(shí)世界的經(jīng)濟(jì)活動(dòng)中,諸如增長(zhǎng)率、降低率、復(fù)利、分期付款等與年份有關(guān)的實(shí)際問(wèn)題以及資源利用、環(huán)境保護(hù)等社會(huì)生活的熱點(diǎn)問(wèn)題常常就歸結(jié)為數(shù)列問(wèn)題。即數(shù)列模型。
3.枚舉方法建模。許多實(shí)際問(wèn)題常常涉及到多種可能性,要求最優(yōu)解,我們可以把這些可能性一一羅列出來(lái),按照某些標(biāo)準(zhǔn)選擇較優(yōu)者,稱之為枚舉方法建模,也稱窮舉方法建模(如我們熟悉的線性規(guī)劃問(wèn)題)。
4.圖形方法建模。很多實(shí)際問(wèn)題,如果我們能夠設(shè)法把它“翻譯”成某個(gè)圖形,那么利用圖形“語(yǔ)言”常常能直觀地得到問(wèn)題的求解方法,我們稱之為圖形方法建模,在數(shù)學(xué)競(jìng)賽的圖論中經(jīng)常用到。
從數(shù)學(xué)建模的定義、類型、步驟、概念可知,其實(shí)數(shù)學(xué)建模并不神秘,有時(shí)多題一解也是一種數(shù)學(xué)建模,只有我們認(rèn)識(shí)到它的重要性,心中有數(shù)學(xué)建模意識(shí),才能有效地引領(lǐng)學(xué)生建立數(shù)學(xué)建模意識(shí),從而掌握建模方法。
在新課標(biāo)理念指導(dǎo)下,高考命題中應(yīng)用問(wèn)題的命題力度、廣度,其導(dǎo)向是十分明確的。因?yàn)橥ㄟ^(guò)數(shù)學(xué)建模過(guò)程的分析、思考過(guò)程,可以深化學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解;通過(guò)對(duì)數(shù)學(xué)應(yīng)用問(wèn)題的分類研究,對(duì)學(xué)生解決數(shù)學(xué)應(yīng)用問(wèn)題的心理過(guò)程的分析和研究,又將推動(dòng)數(shù)學(xué)教學(xué)改革向縱深發(fā)展,從而有利于實(shí)施素質(zhì)教育。這些都是我們新課標(biāo)所提倡的。也正是我們數(shù)學(xué)教學(xué)工作者要重視與努力的。
參考文獻(xiàn):
[1]董方博,《高中數(shù)學(xué)和建模方法》,武漢出版社.
[2]柯友富,《運(yùn)用雙曲線模型解題》,中學(xué)數(shù)學(xué)教學(xué)參考,20xx(6).
[3]陸習(xí)曉,《用模型法解計(jì)數(shù)問(wèn)題》,中學(xué)教研,20xx(9).
[4]湯浩,《回歸生活,讓數(shù)學(xué)課堂“活”起來(lái)》,數(shù)學(xué)教育研究,20xx(7)
數(shù)學(xué)建模論文模板5
1明確概念,了解內(nèi)涵
我們所說(shuō)的數(shù)學(xué)模型指的是用精準(zhǔn)的數(shù)學(xué)語(yǔ)言去模擬和描述實(shí)際生活中的空間形式、數(shù)量關(guān)系等,其主要特點(diǎn)就是運(yùn)用數(shù)學(xué)語(yǔ)言將客觀現(xiàn)象或者事物的特點(diǎn)、主要關(guān)系表述出來(lái),使之成為一種具體的數(shù)學(xué)結(jié)構(gòu)。例如,小學(xué)數(shù)學(xué)問(wèn)題中“5棵白菜與2棵白菜堆起來(lái)是多少棵”、“5只羊與2只羊加在一起是多少只”這樣問(wèn)“一共有多少”的問(wèn)題有很多,如果每次都一遍遍數(shù)太麻煩,于是運(yùn)用加法數(shù)學(xué)模型可以解決很多的類似問(wèn)題。同時(shí),當(dāng)許多相同的數(shù)加在一起時(shí),則可以運(yùn)用乘法數(shù)學(xué)模型。又如,“小芳家的儲(chǔ)藏室長(zhǎng)16分米、寬12分米,如果使用邊長(zhǎng)為整分米數(shù)的正方形瓷磚來(lái)鋪設(shè)儲(chǔ)藏室地面(使用瓷磚都是整塊的),邊長(zhǎng)為多少分米的瓷磚合適?其最大邊長(zhǎng)是幾分米?”當(dāng)小學(xué)生面對(duì)這樣的問(wèn)題時(shí),也可以運(yùn)用數(shù)學(xué)模型來(lái)解決。在小學(xué)數(shù)學(xué)建模教學(xué)過(guò)程中,不少人認(rèn)為建模是學(xué)者、專家的事情,作為小學(xué)生來(lái)說(shuō)只能運(yùn)用模型或者找一個(gè)生活原型來(lái)加深對(duì)數(shù)學(xué)模型的認(rèn)識(shí)和理解,而無(wú)法做到創(chuàng)建數(shù)學(xué)模型。然而筆者不這么認(rèn)為,其原因主要有:第一,小學(xué)生也有創(chuàng)建數(shù)學(xué)模型的可能與機(jī)會(huì);第二,一旦學(xué)生面臨實(shí)際問(wèn)題時(shí),可能會(huì)出現(xiàn)沒(méi)有現(xiàn)成的模型來(lái)套用的情況,因此學(xué)生自己必須通過(guò)探索研究,找到適合的數(shù)學(xué)模型,從而解決問(wèn)題。此外,在小學(xué)數(shù)學(xué)建模的教學(xué)過(guò)程中,還需要依據(jù)不同階段的學(xué)生特點(diǎn),對(duì)其提出不同的要求,具體來(lái)說(shuō)主要分為以下幾個(gè)階段:第一,學(xué)生以具體形象的思維主,此時(shí)較難掌握建模的方法,因此教師必須逐步培養(yǎng)其建模思維,逐步讓學(xué)生運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題;第二,學(xué)生從具體形象思維向抽象邏輯思維過(guò)渡,此時(shí)教師應(yīng)讓學(xué)生充分感受到數(shù)學(xué)建模的過(guò)程,并逐步掌握建模要領(lǐng),提升其運(yùn)用建模知識(shí)解決實(shí)際問(wèn)題的能力。
2體現(xiàn)過(guò)程,循序漸進(jìn)
第一,準(zhǔn)備模型,豐富問(wèn)題情境,激活已有經(jīng)驗(yàn)。眾所周知,模型的建立離不開(kāi)具體的現(xiàn)實(shí)情境,因此只有對(duì)問(wèn)題的情境有了充分的認(rèn)識(shí),才能有效建模。因此,作為教師必須要善于開(kāi)發(fā)學(xué)生豐富問(wèn)題背景的能力,充分利用身邊的生活素材來(lái)創(chuàng)建與實(shí)際生活相符的生活情境,從而為創(chuàng)建模型提供豐富的體驗(yàn)。比如在《確定起跑線》一課的教學(xué)過(guò)程中,某教室先播放了400米賽跑的片段,一一展示了跑道的整體狀況、運(yùn)動(dòng)員起跑瞬間、比賽過(guò)程及最后的沖刺等情況?赐曛螅瑢W(xué)生會(huì)產(chǎn)生許多疑問(wèn):為什么運(yùn)動(dòng)員不在同一起跑線上?為什么跑彎道時(shí),內(nèi)道運(yùn)動(dòng)員能夠超過(guò)外道運(yùn)動(dòng)員?然后學(xué)生就會(huì)提取相關(guān)的信息,比如:跑道是有彎道和直道兩部分組成,有著相同的終點(diǎn),外道比內(nèi)道長(zhǎng),因此起跑線也就不同。此時(shí)教師需要做的就是用課件對(duì)學(xué)生的這些問(wèn)題及答案一一予以證實(shí)。這種運(yùn)用生活中熟悉的事物充分引入課堂教學(xué)內(nèi)容中,以情境的方式展示給學(xué)生的方式,對(duì)激活學(xué)生現(xiàn)有的生活經(jīng)驗(yàn)有著較大的幫助,學(xué)生有了豐富的背景作依賴,就能更好的解決本課的數(shù)學(xué)模型問(wèn)題,即“相鄰起跑線的距離差=直徑差×π”。
第二,假設(shè)模型,把握本質(zhì)特征,提出合理假設(shè)。在小學(xué)數(shù)學(xué)建模的教學(xué)過(guò)程中,可依據(jù)建模的目的及建模對(duì)象的特征來(lái)觀察、分析、抽象、概括實(shí)際的數(shù)學(xué)問(wèn)題,并用準(zhǔn)確的`數(shù)學(xué)語(yǔ)言來(lái)提出合理的假設(shè),這一點(diǎn)很關(guān)鍵。此外,這一過(guò)程中還要求學(xué)生能夠善于分別問(wèn)題的主次方面,為建模提供正確的方向。
第三,建構(gòu)模型,合理選擇策略,親歷建模過(guò)程。在數(shù)學(xué)建模過(guò)程中,策略選擇十分利則會(huì)對(duì)建模過(guò)程產(chǎn)生直接的影響。要知道,合適的策略能夠幫助學(xué)生精準(zhǔn)抓住問(wèn)題的實(shí)質(zhì),因此作為教師而言,應(yīng)立足與學(xué)生的認(rèn)知特征和認(rèn)知起點(diǎn),充分讓學(xué)生親歷運(yùn)用合適策略進(jìn)行建模的整個(gè)過(guò)程。
第四,應(yīng)用模型,回歸實(shí)際問(wèn)題,拓展模型應(yīng)用。大家都知道,建模的目的就是為了更好地對(duì)社會(huì)現(xiàn)象及自然現(xiàn)象進(jìn)行描述,為此,建立數(shù)學(xué)模型的終極目的還是要回歸實(shí)際問(wèn)題,從而更好的認(rèn)識(shí)自然,改造自然。此外,在數(shù)學(xué)建模過(guò)程中還應(yīng)將模型有效的還原成具體或者直觀的數(shù)學(xué)現(xiàn)實(shí),并教會(huì)學(xué)生利用建模過(guò)程中所運(yùn)用的策略和方法來(lái)解決其他問(wèn)題,只有這樣數(shù)學(xué)建模教學(xué)才能走得更遠(yuǎn)。
3針對(duì)學(xué)情,把準(zhǔn)目標(biāo)
第一,正確處理數(shù)學(xué)知識(shí)與小學(xué)生認(rèn)知水平的關(guān)系。小學(xué)階段,學(xué)生的邏輯思維與感性經(jīng)驗(yàn)有著較為密切的聯(lián)系,有著明顯的形象性。因此,需要密切聯(lián)系生活實(shí)際進(jìn)行數(shù)學(xué)建模教學(xué),同時(shí)還要符合小學(xué)生的心理發(fā)展規(guī)律及認(rèn)知特征,并逐步向小學(xué)生滲透建模的思想,培養(yǎng)其建模能力。
第二,正確定位建模的教學(xué)定位。對(duì)此,我們必須認(rèn)識(shí)到,學(xué)生在學(xué)習(xí)數(shù)學(xué)建模方法的過(guò)程是一個(gè)不斷深化、不斷積累的過(guò)程。作為教師,應(yīng)在教學(xué)實(shí)踐中充分結(jié)合數(shù)學(xué)知識(shí),反復(fù)對(duì)建模方法加以滲透,并幫助學(xué)生正確理解題意、解決問(wèn)題,讓學(xué)生充分感受建模過(guò)程的重要意義。
第三,正確處理建模教學(xué)的兩面性。具體來(lái)說(shuō),主要表現(xiàn)為以下兩點(diǎn):一是形象、直觀、簡(jiǎn)潔的一面,其對(duì)學(xué)生理解、掌握及運(yùn)用相關(guān)的數(shù)學(xué)知識(shí)解決問(wèn)題有著積極的作用;二是固定、模式化的一面又極大的限制了學(xué)生的思維。因此,在數(shù)學(xué)建模教學(xué)過(guò)程中,作為教師應(yīng)時(shí)刻注意把握好形象、直觀、簡(jiǎn)潔的一面,盡可能避免解決問(wèn)題的模式化、固定化。
數(shù)學(xué)建模論文模板6
論文標(biāo)題:xxxxxxx
摘要
摘要是論文內(nèi)容不加注釋和評(píng)論的簡(jiǎn)短陳述,其作用是使讀者不閱讀論文全文即能獲得必要的信息。
一般說(shuō)來(lái),摘要應(yīng)包含以下五個(gè)方面的內(nèi)容:
、傺芯康闹饕獑(wèn)題;
、诮⒌氖裁茨P;
③用的什么求解方法;
、苤饕Y(jié)果(簡(jiǎn)單、主要的);
、葑晕以u(píng)價(jià)和推廣。
摘要中不要有關(guān)鍵字和數(shù)學(xué)表達(dá)式。
數(shù)學(xué)建模競(jìng)賽章程規(guī)定,對(duì)競(jìng)賽論文的評(píng)價(jià)應(yīng)以:
①假設(shè)的合理性
、诮5膭(chuàng)造性
③結(jié)果的正確性
、芪淖直硎龅那逦 為主要標(biāo)準(zhǔn)。
所以論文中應(yīng)努力反映出這些特點(diǎn)。
注意:整個(gè)版式要完全按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽論文格式規(guī)范》的要求書(shū)寫,否則無(wú)法送全國(guó)評(píng)獎(jiǎng)。
一、 問(wèn)題的重述
數(shù)學(xué)建模競(jìng)賽要求解決給定的問(wèn)題,所以一般應(yīng)以“問(wèn)題的重述”開(kāi)始。
此部分的`目的是要吸引讀者讀下去,所以文字不可冗長(zhǎng),內(nèi)容選擇不要過(guò)于分散、瑣碎,措辭要精練。
這部分的內(nèi)容是將原問(wèn)題進(jìn)行整理,將已知和問(wèn)題明確化即可。
注意:在寫這部分的內(nèi)容時(shí),絕對(duì)不可照抄原題!
應(yīng)為:在仔細(xì)理解了問(wèn)題的基礎(chǔ)上,用自己的語(yǔ)言重新將問(wèn)題描述一篇。應(yīng)盡量簡(jiǎn)短,沒(méi)有必要像原題一樣面面俱到。
二、 模型假設(shè)
作假設(shè)時(shí)需要注意的問(wèn)題:
、贋閱(wèn)題有幫助的所有假設(shè)都應(yīng)該在此出現(xiàn),包括題目中給出的假設(shè)!
、谥厥霾荒艽婕僭O(shè)! 也就是說(shuō),雖然你可能在你的問(wèn)題重述中已經(jīng)敘述了某個(gè)假設(shè),但在這里仍然要再次敘述!
③與題目無(wú)關(guān)的假設(shè),就不必在此寫出了。
三、 變量說(shuō)明
為了使讀者能更充分的理解你所做的工作,
對(duì)你的模型中所用到的變量,應(yīng)一一加以說(shuō)明,變量的輸入必須使用公式編輯器。 注意:
、僮兞空f(shuō)明要全 即是說(shuō),在后面模型建立模型求解過(guò)程中使用到的所有變量,都應(yīng)該在此加以說(shuō)明。
、谝c數(shù)學(xué)中的習(xí)慣相符,不要使用程序中變量的寫法
比如:一般表示圓周率;cba,, 一般表示常量、已知量;zyx,, 一般表示變量、未知量
再比如:變量21,aa等,就不要寫成:a[0],a[1]或a(1),a(2)
四、模型的建立與求解
這一部分是文章的重點(diǎn),要特別突出你的創(chuàng)造性的工作。在這部分寫作需要注意的事項(xiàng)有:
、僖欢ㄒ蟹治,而且分析應(yīng)在所建立模型的前面;
②一定要有明確的模型,不要讓別人在你的文章 中去找你的模型;
、坳P(guān)系式一定要明確;思路要清晰,易讀易懂。
、芙Ec求解一定要截然分開(kāi);
⑤結(jié)果不能代替求解過(guò)程:必須要有必要的求解過(guò)程和步驟!最好能像寫算法一樣,一步一步的寫出其步驟;
、藿Y(jié)果必須放在這一部分的結(jié)果中,不能放在附錄里。
⑦結(jié)果一定要全,題目中涉及到的所有問(wèn)題必須都有詳細(xì)的結(jié)果和必須的中間結(jié)果!
、喑绦虿荒艽媲蠼膺^(guò)程和結(jié)果!
⑨非常明顯、顯而易見(jiàn)的結(jié)果也必須明確、清晰的寫在你的結(jié)果中!
、饷總(gè)問(wèn)題和問(wèn)題之間以及5個(gè)小點(diǎn)之間都必須空一行。
問(wèn)題一:
1.建模思路:
、賹(duì)問(wèn)題的詳盡分析;
②對(duì)模型中參數(shù)的現(xiàn)實(shí)解釋;這有助于我們抓住問(wèn)題的本質(zhì)特征,同時(shí)也會(huì)使數(shù)學(xué)公式充滿生氣,不再枯燥無(wú)味
、弁瓿蓛(nèi)容闡述所必需的公式推導(dǎo)、圖表等
2.模型建立:
建立模型并對(duì)模型作出必要的解釋
對(duì)于你所建立的模型,最好能對(duì)其中的每個(gè)式子都給出文字解釋。
3.求解方法:
給出你的求解思路,最好能想寫算法一樣,寫出你的算法。
4.求解結(jié)果
數(shù)學(xué)建模論文模板7
隨著社會(huì)經(jīng)濟(jì)的飛速發(fā)展,數(shù)學(xué)在各種領(lǐng)域中所發(fā)揮的作用也越來(lái)越顯著“高技術(shù)實(shí)質(zhì)即數(shù)學(xué)技術(shù)”這一觀點(diǎn)廣受肯定,有關(guān)數(shù)學(xué)的應(yīng)用性也備受社會(huì)各界關(guān)注和重視。為了反映社會(huì)及經(jīng)濟(jì)發(fā)展的需要,我國(guó)教育在培養(yǎng)學(xué)生時(shí),除了要求其掌握理論知識(shí)以外,還要求其能夠利用數(shù)學(xué)思想及方法,及時(shí)發(fā)現(xiàn)和解決實(shí)際中所遇到的各類問(wèn)題,最終成為同社會(huì)及經(jīng)濟(jì)發(fā)展相適應(yīng)的應(yīng)用型人才。而這種利用數(shù)學(xué)思想分析實(shí)際問(wèn)題,找到數(shù)學(xué)關(guān)系及規(guī)律,并將該問(wèn)題轉(zhuǎn)變?yōu)閿?shù)學(xué)問(wèn)題,構(gòu)建相應(yīng)的數(shù)學(xué)模型,從而解決問(wèn)題的過(guò)程即數(shù)學(xué)建模。為此,各高校在培養(yǎng)應(yīng)用型人才時(shí),必須注重加強(qiáng)學(xué)生數(shù)學(xué)建模能力的提升。
一、對(duì)高校應(yīng)用型人才培養(yǎng)的認(rèn)識(shí)
所謂的“應(yīng)用型人才”,指的是能夠利用所學(xué)知識(shí)及專業(yè)技能在社會(huì)及經(jīng)濟(jì)活動(dòng)中予以正確實(shí)踐的專業(yè)化人才,也是具備生產(chǎn)一線基礎(chǔ)知識(shí)及技能,專門從事一線生產(chǎn)的人才。社會(huì)對(duì)于應(yīng)用型人才提出了如下要求:不僅具備扎實(shí)的基礎(chǔ),寬泛的知識(shí)面,較強(qiáng)的應(yīng)用能力,還具有較高的素質(zhì),擁有創(chuàng)新及團(tuán)隊(duì)合作意識(shí)。其突出特點(diǎn)即知識(shí)面寬廣、理論基礎(chǔ)深厚,可以講所學(xué)知識(shí)正確地應(yīng)用于相關(guān)行業(yè)領(lǐng)域,同時(shí),能夠適應(yīng)市場(chǎng)經(jīng)濟(jì)發(fā)展對(duì)于人才需求的逐步變化,還具有進(jìn)一步接受教育與汲取新知識(shí)的能力,能夠逐步擴(kuò)展同職業(yè)相關(guān)的學(xué)科能力。
隨著我國(guó)各大高校擴(kuò)招力度逐步加大,高等教育正在逐步朝著大眾化趨勢(shì)發(fā)展,傳統(tǒng)學(xué)術(shù)型或研究型人才培養(yǎng)模式面臨著越來(lái)越嚴(yán)峻的挑戰(zhàn),為此,不少發(fā)達(dá)國(guó)家紛紛提出了“培養(yǎng)應(yīng)用型人才,發(fā)展應(yīng)用型高!钡葢(zhàn)略方針。其中,德國(guó)早在上個(gè)世紀(jì)70年代就已經(jīng)成立了首座應(yīng)用型科技大學(xué),專門培養(yǎng)和發(fā)展應(yīng)用型人才,并受到了普遍的歡迎,此外,美、英、日也紛紛建立了應(yīng)用型高校。近些年來(lái),我國(guó)各大院在培養(yǎng)應(yīng)用型人才方面也取得了顯著的成果,但由于認(rèn)識(shí)方面存在不足,因此,應(yīng)用型培養(yǎng)方案及實(shí)施過(guò)程仍存在諸多問(wèn)題,培養(yǎng)模式有待進(jìn)一步完善。經(jīng)多年探索,結(jié)合數(shù)學(xué)在各個(gè)領(lǐng)域中的廣泛應(yīng)用及培養(yǎng)應(yīng)用型人才的相關(guān)要求,借助于數(shù)學(xué)建模加快高校應(yīng)用型人才的培養(yǎng)具有十分重要的作用。
二、數(shù)學(xué)建模對(duì)我國(guó)高校應(yīng)用型人才培養(yǎng)的現(xiàn)實(shí)作用分析
數(shù)學(xué)建模需要利用數(shù)學(xué)知識(shí)、語(yǔ)言及方法,對(duì)實(shí)際問(wèn)題進(jìn)行刻畫(huà),對(duì)于已建立的模型通過(guò)推理、證明、計(jì)算等,并通過(guò)數(shù)學(xué)軟件來(lái)求解,對(duì)求出的結(jié)果同實(shí)際問(wèn)題相似合。具體而言,數(shù)學(xué)建模對(duì)我國(guó)高校應(yīng)用型人才培養(yǎng)的作用表現(xiàn)在如下方面:
(一)有助于團(tuán)隊(duì)合作意識(shí)的培養(yǎng)
鑒于實(shí)際問(wèn)題往往相對(duì)復(fù)雜,因此,數(shù)學(xué)建模時(shí)需要搜集大量的數(shù)據(jù)及信息,并對(duì)這些數(shù)據(jù)進(jìn)行篩選、分析和處理,建模時(shí)通常需要對(duì)模型進(jìn)行假設(shè)、建立、求解,并對(duì)模型的計(jì)算進(jìn)行設(shè)計(jì),利用計(jì)算機(jī)軟件對(duì)結(jié)果進(jìn)行分析和檢驗(yàn),將結(jié)果同實(shí)際問(wèn)題進(jìn)行擬合,此過(guò)程在短暫的時(shí)間內(nèi),僅僅依靠一個(gè)人的力量是很難完成的,因此,數(shù)學(xué)建模過(guò)程往往需要組建一個(gè)團(tuán)隊(duì),要求學(xué)生相互之間、師生間以及與社會(huì)間進(jìn)行有效地溝通與合作。因此,數(shù)學(xué)建模有助于培養(yǎng)學(xué)生的團(tuán)隊(duì)合作意識(shí),這方面恰恰是社會(huì)對(duì)于應(yīng)用型人才培養(yǎng)的最基本要求之一。
(二)有助于創(chuàng)新能力的培養(yǎng)
由于數(shù)學(xué)建模過(guò)程中所涉及的數(shù)據(jù)多數(shù)雜亂無(wú)章,因此,要求學(xué)生能夠有效地進(jìn)行篩選,去粗取精,經(jīng)過(guò)一系列歸納、整理、加工、提煉與總結(jié),對(duì)已知條件進(jìn)行量化,并對(duì)數(shù)學(xué)關(guān)系進(jìn)行恰當(dāng)描述,最終組建出相應(yīng)的數(shù)學(xué)模型,再通過(guò)所學(xué)理論及方法對(duì)該模型進(jìn)行求解。為了簡(jiǎn)化實(shí)際問(wèn)題,必須針對(duì)各種因素進(jìn)行分析,對(duì)其中可忽略不計(jì)的因素進(jìn)行判斷,這要求學(xué)生必須對(duì)實(shí)際問(wèn)題具有深刻地理解,明確研究目標(biāo)及數(shù)學(xué)背景,以完成這一創(chuàng)造性的過(guò)程。此外,數(shù)學(xué)模型必須對(duì)實(shí)際問(wèn)題進(jìn)行真實(shí)、近似地刻畫(huà),以求所構(gòu)建模型能夠近乎完美、全面地表達(dá)這一實(shí)際問(wèn)題,同時(shí),還要求該模型容易求解,為此,必須對(duì)該模型進(jìn)行不斷改善,要求學(xué)生可以進(jìn)入更深的知識(shí)層面中,反復(fù)產(chǎn)生更多新問(wèn)題,往復(fù)循環(huán),從而實(shí)現(xiàn)學(xué)生創(chuàng)新能力地逐步提高,滿足應(yīng)用型人才的相關(guān)要求。
(三)有助于學(xué)生綜合素質(zhì)及能力的培養(yǎng)
數(shù)學(xué)建模實(shí)質(zhì)上就是綜合運(yùn)用數(shù)學(xué)知識(shí)及方法解決社會(huì)實(shí)踐問(wèn)題的過(guò)程,要求學(xué)生除了具備扎實(shí)的'數(shù)學(xué)基礎(chǔ)及邏輯思維能力以外,還對(duì)實(shí)際問(wèn)題的背景具有一定的了解,能夠?qū)λ邆涞母黝愔R(shí)進(jìn)行融會(huì)貫通。數(shù)學(xué)建模數(shù)據(jù)龐大而又復(fù)雜,因此,處理數(shù)據(jù)不僅需要分析和綜合,還需要抽象、概括、比較、類比等多個(gè)過(guò)程,經(jīng)過(guò)如此種種的培養(yǎng),學(xué)生應(yīng)變能力、全面分析及綜合思考能力均得到了有效地提高,逐步加強(qiáng)了個(gè)人的綜合素質(zhì)及能力培養(yǎng),這也是成為應(yīng)用型人才的基本要求。
(四)有助于學(xué)生實(shí)踐操作能力的培養(yǎng)
通常而言,以實(shí)際問(wèn)題為依據(jù)所抽象和建立起的數(shù)學(xué)模型往往十分復(fù)雜,因此,數(shù)學(xué)模型求解過(guò)程也很困難,甚至難以求出解析解,即使可以求得也因過(guò)于復(fù)雜而缺乏足夠的應(yīng)用價(jià)值。因此,求解數(shù)學(xué)模型時(shí)需對(duì)計(jì)算方法進(jìn)行設(shè)計(jì)和編寫,利用數(shù)學(xué)軟件對(duì)該數(shù)值解進(jìn)行計(jì)算,要求學(xué)生必須具備數(shù)學(xué)軟件及計(jì)算機(jī)操作及運(yùn)用能力,經(jīng)這些過(guò)程的鍛煉,學(xué)生實(shí)踐動(dòng)手能力也勢(shì)必得到了大幅度地提高。此外,數(shù)學(xué)建模需進(jìn)行調(diào)研,對(duì)數(shù)據(jù)進(jìn)行廣泛搜集和補(bǔ)充,此即培養(yǎng)應(yīng)用型人才中所格外關(guān)注的踐性。
(五)全面體現(xiàn)了理論知識(shí)的實(shí)踐應(yīng)用性
數(shù)學(xué)建模中存在許多較為典型的案例,例如,“最優(yōu)化捕魚(yú)策略”,“投資收入及風(fēng)險(xiǎn)”等等,這些都凸顯了數(shù)學(xué)知識(shí)強(qiáng)大的應(yīng)用性。因此,數(shù)學(xué)建模已經(jīng)成為數(shù)學(xué)應(yīng)用的必經(jīng)之路,也是將數(shù)學(xué)和社會(huì)實(shí)踐聯(lián)系起來(lái)的樞紐和橋梁。數(shù)學(xué)建模需借助于數(shù)學(xué)知識(shí)及方法,對(duì)所需解決的問(wèn)題進(jìn)行刻畫(huà),同時(shí),數(shù)學(xué)建模還必須對(duì)所計(jì)算的結(jié)果同實(shí)際問(wèn)題相似合,其全面體現(xiàn)了數(shù)學(xué)理論知識(shí)的實(shí)踐應(yīng)用性,這方面同社會(huì)對(duì)于應(yīng)用型人才培養(yǎng)的要求是相互契合的。
(六)有助于學(xué)生自主學(xué)習(xí)及表達(dá)能力的培養(yǎng)
數(shù)學(xué)建模要求學(xué)生自主分析、探索和解決問(wèn)題,無(wú)論是數(shù)據(jù)收集、補(bǔ)充、完善,還是構(gòu)建模型,都需要學(xué)生主動(dòng)參與其中,獨(dú)立解決求解等過(guò)程,此外,建模需要全面運(yùn)用各個(gè)專業(yè)學(xué)科知識(shí),掌握不同的背景資料,科學(xué)判斷和取舍相關(guān)數(shù)據(jù),同時(shí),要求自主查詢實(shí)際問(wèn)題所涉及到的知識(shí)及資料,所有這些都為培養(yǎng)學(xué)生的自主學(xué)習(xí)能力提供了良好的條件。數(shù)學(xué)建模過(guò)程要求采用學(xué)生自己的語(yǔ)言對(duì)實(shí)際問(wèn)題進(jìn)行描述和解決,需要深度地溝通和交流,也需要對(duì)論文進(jìn)行寫作,因此,這些也提高了他們的語(yǔ)言組織及表達(dá)能力。在培養(yǎng)應(yīng)用型人才時(shí),一個(gè)顯著特點(diǎn)即要求其具備繼續(xù)教育及汲取新知識(shí)的能力,能夠拓展同職業(yè)相關(guān)的理論專業(yè)知識(shí)及技能,而數(shù)學(xué)建模培養(yǎng)了學(xué)生的自主學(xué)習(xí)及語(yǔ)言表達(dá)能力,為他們進(jìn)一步汲取新知識(shí)、提高新技能打下了堅(jiān)實(shí)的基礎(chǔ)。
可以這樣說(shuō),經(jīng)過(guò)數(shù)學(xué)建模的系統(tǒng)化訓(xùn)練,學(xué)生收獲了探索實(shí)際問(wèn)題的真實(shí)體驗(yàn),提高了信息收集、篩選、分析及運(yùn)用能力,明白了分享與合作的重要性,鍛煉了洞察力、意志力、自主學(xué)習(xí)、語(yǔ)言表達(dá)、專業(yè)知識(shí)綜合運(yùn)用、分析及解決問(wèn)題的能力等等,所有這些都滿足應(yīng)用型人才培養(yǎng)目標(biāo),同應(yīng)用型人才培養(yǎng)模式的要求保持一致。因此,數(shù)學(xué)建模在高校應(yīng)用型人才培養(yǎng)過(guò)程中發(fā)揮著巨大的作用。
三、提高大學(xué)生數(shù)學(xué)建模能力的若干建議
(一)設(shè)立專門的數(shù)學(xué)建模課程
高校應(yīng)設(shè)立專門的數(shù)學(xué)建模課程,要求數(shù)學(xué)教師必須具備足夠的數(shù)學(xué)建模知識(shí)及能力,一方面,能夠在課堂教學(xué)過(guò)程中滲透數(shù)學(xué)建模思想及應(yīng)用的重要性;另一方面,可以將數(shù)學(xué)建模和學(xué)科知識(shí)理論相結(jié)合,游刃有余地引導(dǎo)學(xué)生學(xué)習(xí)和應(yīng)用數(shù)學(xué)知識(shí)及方法。利用實(shí)踐問(wèn)題及典型案例,靈活穿插于課程教學(xué)之中,使學(xué)生逐步提高數(shù)學(xué)建模能力,并對(duì)數(shù)學(xué)建模產(chǎn)生濃厚的興趣。
(二)將應(yīng)用型人才培養(yǎng)目標(biāo)與數(shù)學(xué)建模相結(jié)合
要明確學(xué)生的主體地位,無(wú)論教學(xué)還是數(shù)學(xué)建模競(jìng)賽輔導(dǎo),都必須將課堂主體這一地位讓出來(lái),讓學(xué)生自主進(jìn)行案例閱讀、信息搜集及處理、模型建立及討論,將大家從被動(dòng)接受轉(zhuǎn)變?yōu)橹鲃?dòng)探索與思考,提高其學(xué)習(xí)興趣,同時(shí),充分發(fā)揮其潛力,提高其獨(dú)立思考及解決問(wèn)題的能力,逐步提高自身的綜合素質(zhì),不斷朝著應(yīng)用型人才方向發(fā)展。應(yīng)用型人才培養(yǎng)要體現(xiàn)專業(yè)優(yōu)勢(shì),它與數(shù)學(xué)建模是緊密聯(lián)系的。在實(shí)際培養(yǎng)過(guò)程中,要以數(shù)學(xué)科目為基礎(chǔ),運(yùn)用數(shù)學(xué)軟件等工具,為數(shù)學(xué)建模提供必要的支持,并為日后在社會(huì)實(shí)踐中的應(yīng)用打下良好的基礎(chǔ)。
(三)抓好建模教學(xué)兩大階段
一是在全校范圍內(nèi)開(kāi)設(shè)建模課程,便于有興趣的學(xué)生學(xué)習(xí)基礎(chǔ)性的建模知識(shí),接觸簡(jiǎn)單的問(wèn)題及模型,了解數(shù)學(xué)建模課程的基本方法和內(nèi)容;二是暑期強(qiáng)化培訓(xùn)階段,為了更好地應(yīng)對(duì)數(shù)學(xué)建模競(jìng)賽,必須對(duì)學(xué)生的數(shù)學(xué)建模能力進(jìn)行強(qiáng)化鍛煉,提高其數(shù)學(xué)應(yīng)用能力。在這兩個(gè)階段內(nèi),教師的作用至關(guān)重要,暑期培訓(xùn)主要針對(duì)的是有一定專業(yè)基礎(chǔ)、自主動(dòng)手能力較強(qiáng)、建模積極性較高的學(xué)生。因此,在這個(gè)階段,應(yīng)選擇歷屆數(shù)學(xué)建模競(jìng)賽題向?qū)W生進(jìn)行講解,由擁有豐富經(jīng)驗(yàn)的教師進(jìn)行專題報(bào)告,同時(shí),組織大學(xué)生對(duì)競(jìng)賽進(jìn)行模擬,由往屆學(xué)生傳授競(jìng)賽經(jīng)驗(yàn),使學(xué)生自主尋找解決問(wèn)題的方法,提高創(chuàng)新能力。
(四)設(shè)立數(shù)學(xué)建模小組及建模協(xié)會(huì)
在教學(xué)培養(yǎng)中設(shè)立數(shù)學(xué)建模競(jìng)爭(zhēng)小組,依據(jù)現(xiàn)有師資力量,對(duì)不同資質(zhì)、興趣、特長(zhǎng)和專業(yè)的教師進(jìn)行分組。不同類型小組負(fù)責(zé)指定工作內(nèi)容,要保證培訓(xùn)、學(xué)習(xí)和競(jìng)賽目標(biāo)的高效完成。此外,還可設(shè)立相應(yīng)的建模協(xié)會(huì),組建對(duì)外開(kāi)放的數(shù)學(xué)建模實(shí)驗(yàn)室,建模協(xié)會(huì)每年定期在校園內(nèi)舉報(bào)建模競(jìng)賽,請(qǐng)教師或歷屆獲獎(jiǎng)學(xué)生進(jìn)行建模知識(shí)講座,對(duì)數(shù)學(xué)建模進(jìn)行宣傳,培養(yǎng)大學(xué)生的學(xué)習(xí)興趣,為優(yōu)秀參賽人員的選拔奠定基礎(chǔ),這樣不僅豐富了學(xué)生業(yè)余文化生活,還提高了其科研水平。
數(shù)學(xué)建模論文模板8
1. 問(wèn)題重述:(略)
2. 問(wèn)題背景:
交待問(wèn)題背景,說(shuō)明處理此問(wèn)題的意義和必要性。
優(yōu)點(diǎn):敘述詳盡,條理清楚,論證充分
缺點(diǎn):前兩段過(guò)于冗長(zhǎng),可作適當(dāng)刪節(jié)
3. 問(wèn)題分析:
進(jìn)一步闡述解決此問(wèn)題的意義所在,分析了問(wèn)題,簡(jiǎn)述要解決此問(wèn)題需要哪些條件和大體的解決途徑
優(yōu)點(diǎn):條理比較清晰,論述符合邏輯,表達(dá)清楚
缺點(diǎn):似乎不夠詳細(xì),尤其是第三段有些過(guò)于概括。
4. 模型的假設(shè)與約定:
共有8條比較合理的假設(shè)
優(yōu)點(diǎn):假設(shè)有依據(jù),合情合理。比如第3條對(duì)上座率的假設(shè),參考了上屆奧運(yùn)會(huì)的情況并充分考慮了我國(guó)國(guó)情,客觀真實(shí)。第8條假設(shè)用了分塊規(guī)劃和割補(bǔ)的方法,估計(jì)面積形狀比較合理,而且達(dá)到了充分花劍問(wèn)題的作用。
缺點(diǎn):有些假設(shè)闡述不太清楚也存在不合理之處,第4條假設(shè)中面積在50-100之間,下面的假設(shè)應(yīng)該是介于50-100之間的數(shù),假設(shè)為最小的50平方米,有失一般性。第6條假設(shè)中,假設(shè)MS最大營(yíng)業(yè)額為20萬(wàn),沒(méi)有說(shuō)明是多長(zhǎng)時(shí)間內(nèi)的,而且此處沒(méi)有對(duì)下文提到的LMS作以說(shuō)明。
5. 符號(hào)說(shuō)明及名詞定義
優(yōu)點(diǎn):比較詳細(xì)清楚,考慮周全,而且較合理地將定性指標(biāo)數(shù)量化。
缺點(diǎn):有些地方?jīng)]有標(biāo)注量綱,比如A和B的量綱不明確。
6. 模型建立與求解
6.1問(wèn)題一:
對(duì)所給數(shù)據(jù)驚醒處理和統(tǒng)計(jì),得出規(guī)律,找到聯(lián)系。
優(yōu)點(diǎn):統(tǒng)計(jì)方法合理,所統(tǒng)計(jì)數(shù)據(jù)對(duì)解決問(wèn)題確實(shí)必不可少,而且用圖表和條形圖的方式反映不同量的變化趨勢(shì),圖文并茂,敘述清楚而且簡(jiǎn)明扼要,除了對(duì)數(shù)據(jù)統(tǒng)計(jì)情況進(jìn)行報(bào)告以外,還就他們之間相關(guān)量之間的關(guān)系進(jìn)行了詳細(xì)闡述,使數(shù)據(jù)統(tǒng)計(jì)更具實(shí)效性。
6.2問(wèn)題二:
6.2.1最短路的確定
為確定最短路徑又提出了一系列假設(shè)并闡述了理由,在這些假設(shè)下規(guī)定了最短路徑
優(yōu)點(diǎn):假設(shè)有根據(jù),理由合情合理
缺點(diǎn):第4條中假設(shè)觀眾消費(fèi)是單向的,雖然簡(jiǎn)化了問(wèn)題但有失一般性,事實(shí)上觀眾往返經(jīng)過(guò)商業(yè)區(qū)消費(fèi)的概率是相差比較大的,我認(rèn)為應(yīng)改為假設(shè)觀眾在往返過(guò)程中消費(fèi)且僅消費(fèi)一次。
6.2.2計(jì)算人流量的追蹤模型
給出計(jì)算人流量的方法,并計(jì)算了各區(qū)人流量,并對(duì)計(jì)算結(jié)果進(jìn)行了分析。
優(yōu)點(diǎn):分情況討論,并且取了兩個(gè)典型的具有代表性的例子進(jìn)行了具體闡述,沒(méi)有全部羅列所有數(shù)據(jù)的計(jì)算過(guò)程,使文章清晰簡(jiǎn)明,不至于繁冗拖沓,這在以后我們寫論文是極其值得借鑒。對(duì)結(jié)果的分析有針對(duì)性,合情合理而且用條形圖直觀地反映了人流量的數(shù)值和各地區(qū)間的差異。
缺點(diǎn):分析還不夠詳細(xì),考慮因素還不夠周到。
6.3問(wèn)題三
進(jìn)一步對(duì)問(wèn)題作以簡(jiǎn)化,將問(wèn)題的解決最終歸結(jié)為一個(gè)焦點(diǎn),并對(duì)解決這個(gè)問(wèn)題所需確定的因素進(jìn)行了討論,最后得出結(jié)論。
6.3.1商區(qū)消費(fèi)額的確定
闡述了為什么要計(jì)算這個(gè)量,計(jì)算這個(gè)量對(duì)解決問(wèn)題有什么至關(guān)重要的作用并且采用了Huff模型并且結(jié)合本問(wèn)題的具體情況來(lái)求解數(shù)據(jù)。
優(yōu)點(diǎn):論證充分合理且模型和經(jīng)濟(jì)學(xué)知識(shí)應(yīng)用恰當(dāng),所得數(shù)據(jù)有效可信,考慮周到而不繁雜,抓住了事物的主要矛盾,而且對(duì)Huff模型的解釋較為充分。
缺點(diǎn):對(duì)于各商業(yè)區(qū)的總消費(fèi)額我們更看重?cái)?shù)量而文中用條形圖的方式卻著重體現(xiàn)了各地區(qū)之間的數(shù)量差異,有喧賓奪主之嫌,改稱圖表形式可以更好地反映數(shù)據(jù)量的值
6.3.2各個(gè)商區(qū)MS數(shù)量的概略確定
確定了確定MS個(gè)數(shù)的方案,在不失一般性的.前提下對(duì)問(wèn)題進(jìn)行進(jìn)一步簡(jiǎn)化,縮小解決問(wèn)題的范圍并對(duì)問(wèn)題進(jìn)行了求解
優(yōu)點(diǎn):簡(jiǎn)潔明了,論述合理。
6.3.3
引入了一個(gè)重要的確定數(shù)量的參數(shù),且對(duì)解決問(wèn)題方法的合理性及此數(shù)據(jù)對(duì)問(wèn)題的解的影響及行了數(shù)值分析和理論論證,提出了改進(jìn)方案,得出結(jié)果,并對(duì)結(jié)果進(jìn)行分析。
優(yōu)點(diǎn):條理清晰,邏輯嚴(yán)謹(jǐn),論證充分,詳盡而不冗長(zhǎng),使本篇論文的精華部分。分析合理且充分考慮到了實(shí)際情況使結(jié)果更具可信性。
6.3.4LMS和MS的分配情況討論
對(duì)二者關(guān)系提出了幾條假設(shè)。
優(yōu)點(diǎn):論述充分,假設(shè)合理而且用圖表反映結(jié)果,簡(jiǎn)單明了,情況考慮全面周到。
6.4問(wèn)題四
分析了方法的科學(xué)性和結(jié)果的貼近實(shí)際性
優(yōu)點(diǎn):條理清晰,分析有依據(jù),措辭嚴(yán)謹(jǐn),邏輯嚴(yán)密而且對(duì)前面所述方法進(jìn)行了分別闡述。這使得對(duì)方法科學(xué)性的論述更加充分可信。對(duì)貼近事實(shí)性的論述,理論和事實(shí)相結(jié)合,敘述數(shù)據(jù)來(lái)源,并采用舉例論證法論證結(jié)果的貼近實(shí)際性。
缺點(diǎn):結(jié)果的貼近實(shí)際性的論證中,應(yīng)詳細(xì)羅列一下數(shù)據(jù)的來(lái)源,也許更加可信。
7. 模型的進(jìn)一步討論
為簡(jiǎn)化抽象現(xiàn)實(shí)一邊建構(gòu)模型而忽略掉的一些因素進(jìn)行了考慮,對(duì)于一些可能影響討論結(jié)果的因素給出了算法和解決方案
優(yōu)點(diǎn):考慮全面,善于抓住主要矛盾,表述簡(jiǎn)明客觀。
8. 模型檢驗(yàn)
與某些近似且已妥善解決的問(wèn)題進(jìn)行了比較,用事實(shí)說(shuō)明處理方案的正確性。
優(yōu)點(diǎn):采用了較好的參照對(duì)象,采用圖像對(duì)比的方法,使問(wèn)題清晰明了。
缺點(diǎn):應(yīng)該簡(jiǎn)述一下雅典奧運(yùn)會(huì)采用的方案是成功的,否則比照就失去了意義,還有由于舉辦地點(diǎn)不同,地區(qū)上的差異使這種單純與雅典奧運(yùn)會(huì)進(jìn)行得比較稍顯單薄。
9. 模型優(yōu)缺點(diǎn)
總結(jié)模型建立并解決問(wèn)題的過(guò)程中的優(yōu)點(diǎn)和缺點(diǎn)
優(yōu)點(diǎn):簡(jiǎn)明扼要,客觀實(shí)在
10. 附錄(略)
參考文獻(xiàn)
數(shù)學(xué)建模論文模板9
摘要:將數(shù)學(xué)建模思想融入高等數(shù)學(xué)的教學(xué)中來(lái),是目前大學(xué)數(shù)學(xué)教育的重要教學(xué)方式。建模思想的有效應(yīng)用,不僅顯著提高了學(xué)生應(yīng)用數(shù)學(xué)模式解決實(shí)際問(wèn)題的能力,還在培養(yǎng)大學(xué)生發(fā)散思維能力和綜合素質(zhì)方面起到重要作用。本文試從當(dāng)前高等數(shù)學(xué)教學(xué)現(xiàn)狀著手,分析在高等數(shù)學(xué)中融入建模思想的重要性,并從教學(xué)實(shí)踐中給出相應(yīng)的教學(xué)方法,以期能給同行教師們一些幫助。
關(guān)鍵詞:數(shù)學(xué)建模;高等數(shù)學(xué);教學(xué)研究
一、引言
建模思想使高等數(shù)學(xué)教育的基礎(chǔ)與本質(zhì)。從目前情況來(lái)看,將數(shù)學(xué)建模思想融入高等教學(xué)中的趨勢(shì)越來(lái)越明顯。但是在實(shí)際的教學(xué)過(guò)程中,大部分高校的數(shù)學(xué)教育仍處在傳統(tǒng)的理論知識(shí)簡(jiǎn)單傳授階段。其教學(xué)成果與社會(huì)實(shí)踐還是有脫節(jié)的現(xiàn)象存在,難以讓學(xué)生學(xué)以致用,感受到應(yīng)用數(shù)學(xué)在現(xiàn)實(shí)生活中的魅力,這種教學(xué)方式需要亟待改善。
二、高等數(shù)學(xué)教學(xué)現(xiàn)狀
高等數(shù)學(xué)是現(xiàn)在大學(xué)數(shù)學(xué)教育中的基礎(chǔ)課程,也是一門必修的課程。他能為其他理工科專業(yè)的學(xué)生提供很多種解題方式與解題思路,是很多專業(yè),如自動(dòng)化工程、機(jī)械工程、計(jì)算機(jī)、電氣化等必不可少的基礎(chǔ)課程。同時(shí),現(xiàn)實(shí)生活中也有很多方面都涉及高數(shù)的運(yùn)算,如,銀行理財(cái)基金的使用問(wèn)題、彩票的概率計(jì)算問(wèn)題等,從這些方面都可以看出人們不能僅僅把高數(shù)看成是一門學(xué)科而已,它還與日常生活各個(gè)方面有重要的聯(lián)系。但現(xiàn)在很多學(xué)校仍以應(yīng)試教育為主,采取填鴨式教學(xué)方式,加上高數(shù)的教材并沒(méi)有與時(shí)俱進(jìn),將其與生活的關(guān)系融入教材內(nèi),使學(xué)生無(wú)法意識(shí)到高數(shù)的重要性以及高數(shù)在日常生活中的魅力,因此產(chǎn)生排斥甚至對(duì)抗的心理,只是在臨考前突擊而已。因此,對(duì)高數(shù)進(jìn)行教學(xué)改革是十分有必要的,而且怎么改,怎么讓學(xué)生發(fā)現(xiàn)高數(shù)的魅力,并積極主動(dòng)學(xué)習(xí)高數(shù)也是作為教師所面臨的一個(gè)重大問(wèn)題。
三、將數(shù)學(xué)建模思想融入高等數(shù)學(xué)的重要性
第一,能夠激發(fā)學(xué)生學(xué)習(xí)高數(shù)的'興趣。建模思想實(shí)際上是使用數(shù)學(xué)語(yǔ)言來(lái)對(duì)生活中的實(shí)際現(xiàn)象進(jìn)行描述的過(guò)程。把建模思想應(yīng)用到高等數(shù)學(xué)的學(xué)習(xí)中,能夠讓學(xué)生們?cè)谌粘I钪欣斫鈹?shù)學(xué)的實(shí)際應(yīng)用狀況與解決日常生活問(wèn)題的方便性,讓學(xué)生們了解到高數(shù)并不只是一門課程,而是整個(gè)日常生活的基礎(chǔ)。例如,在講解微分方程時(shí),可以引入一些歷史上的一些著名問(wèn)題,如以Vanmeegren偽造名畫(huà)案為代表的贗品鑒定問(wèn)題、預(yù)報(bào)人口增長(zhǎng)的Malthus模型與Logistic模型等。 這樣,才能激發(fā)出學(xué)生對(duì)高等數(shù)學(xué)的興趣,并積極投入高等數(shù)學(xué)的學(xué)習(xí)中來(lái)。
第二,能夠提高學(xué)生的數(shù)學(xué)素質(zhì)。社會(huì)的高速發(fā)展不斷要求學(xué)生向更全面、更高素質(zhì)的方向發(fā)展。這就要求學(xué)生不僅要懂得專業(yè)知識(shí),還要能夠?qū)I(yè)知識(shí)運(yùn)用到實(shí)際生活中,擁有解決問(wèn)題的頭腦和實(shí)際操作的技能。這些其實(shí)都可以通過(guò)建模思想在高等數(shù)學(xué)課堂中實(shí)現(xiàn)。高等數(shù)學(xué)的包容性、邏輯性都很強(qiáng)。將建模思想融入高等數(shù)學(xué)的教學(xué)中,既能提高學(xué)生的數(shù)學(xué)素質(zhì),還能鍛煉學(xué)生綜合分析問(wèn)題,解決問(wèn)題的能力。通過(guò)理論與生活實(shí)踐相結(jié)合,達(dá)到社會(huì)發(fā)展的要求,提高自身的社會(huì)競(jìng)爭(zhēng)力。
第三,能夠培養(yǎng)學(xué)生的綜合創(chuàng)新能力!叭f(wàn)眾創(chuàng)新”不僅僅是一個(gè)口號(hào),而應(yīng)該是現(xiàn)代大學(xué)生應(yīng)該具備的一種能力。將數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中,能讓大學(xué)生從實(shí)際生活出發(fā),多方位、多角度考慮問(wèn)題,提高學(xué)生的創(chuàng)新能力。學(xué)生的潛力是可以在多次的建;顒(dòng)中挖掘出來(lái)的。因此教師應(yīng)多組織建模活動(dòng),讓學(xué)生從實(shí)際生活中組建材料,不斷創(chuàng)新思維,找到解決問(wèn)題的方式與方法。
四、將建模思想融入高等數(shù)學(xué)的實(shí)踐方法
第一,轉(zhuǎn)變教學(xué)理念。改變傳統(tǒng)教學(xué)思想與教育方式,提高學(xué)生建模的積極性,增強(qiáng)學(xué)生對(duì)建模方式的認(rèn)同。教師不能只是單一的講解理論知識(shí),還需要引導(dǎo)學(xué)生親自體驗(yàn),從互動(dòng)的教學(xué)過(guò)程中,理解建模思想的重要性。
第二,在生活問(wèn)題中應(yīng)用建模思想。其實(shí),很多日常生活中的很多例子,都是可以解決課堂上的問(wèn)題的。數(shù)學(xué)是來(lái)源于生活的。作為教師,應(yīng)該主動(dòng)引領(lǐng)學(xué)生參與實(shí)踐活動(dòng),將課本的知識(shí)盡量與日常問(wèn)題聯(lián)系到一起,發(fā)動(dòng)學(xué)生主動(dòng)用建模思想解決問(wèn)題,提高創(chuàng)新能力,從不同的角度,以不同的方式提高解決問(wèn)題的能力。例如,學(xué)校要組織元旦晚會(huì),需要學(xué)生去采購(gòu)必需品。超市有多種打折的方式,這時(shí)候教師就可以引導(dǎo)學(xué)生使用建模思想,要求去學(xué)生以模型來(lái)分析各種打折方式的優(yōu)缺點(diǎn),并選擇最優(yōu)惠的方式買到最優(yōu)質(zhì)的晚會(huì)用品。這樣學(xué)生才會(huì)發(fā)現(xiàn)建模的樂(lè)趣,并了解如何在生活案例中應(yīng)用建模思想。
第三,不斷鞏固和提高建模應(yīng)用。數(shù)學(xué)建模思想融入生活實(shí)踐不是一蹴而就的,而是一個(gè)不斷實(shí)踐、循序漸進(jìn)的過(guò)程。人們也不能為了應(yīng)用建模思想而將日常生活生拉硬套。教師也應(yīng)該盡可能多地搜集生活中的案例,將建模思想與生活實(shí)踐更靈活地聯(lián)系在一起。不斷地由淺入深,將建模思想牢牢地印在學(xué)生的腦海中。并根據(jù)每個(gè)學(xué)生的獨(dú)特性,不斷開(kāi)發(fā)學(xué)生的創(chuàng)新潛力和發(fā)散思維能力,提高邏輯思維能力和空間想象力,在實(shí)踐中鞏固深化建模思想。五、結(jié)束語(yǔ)綜上所述,將建模思想融入高等數(shù)學(xué)教學(xué)中,能顯著提高課堂教學(xué)質(zhì)量和學(xué)生解決問(wèn)題的能力,因此教師應(yīng)從整體上把握高數(shù)的教學(xué)體系,讓學(xué)生逐步建立建模思維,不斷深化和鞏固用建模思想解決問(wèn)題的能力。只有這樣,融入數(shù)學(xué)建模思想的高等數(shù)學(xué)的教學(xué)效果才會(huì)起到應(yīng)有的作用。
數(shù)學(xué)建模論文模板10
摘要:高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對(duì)數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個(gè)重要課題。在高校數(shù)學(xué)教學(xué)中開(kāi)展數(shù)學(xué)建模競(jìng)賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對(duì)數(shù)學(xué)的應(yīng)用能力。本文對(duì)高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對(duì)此進(jìn)行了一定的思考。
關(guān)鍵詞:高校數(shù)學(xué);建模競(jìng)賽;創(chuàng)新思維;培養(yǎng)
1數(shù)學(xué)建模競(jìng)賽
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過(guò)運(yùn)用抽象性的數(shù)學(xué)語(yǔ)言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問(wèn)題。當(dāng)前很多高校中開(kāi)始引入數(shù)學(xué)建模思想來(lái)加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問(wèn)題的能力得到提升。數(shù)學(xué)建模競(jìng)賽起源于1985年的美國(guó),幾年后國(guó)內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開(kāi)始參與美國(guó)的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國(guó)首屆數(shù)學(xué)建模大賽召開(kāi),而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長(zhǎng),呈現(xiàn)一派繁榮景象。
2當(dāng)前中國(guó)數(shù)學(xué)建模競(jìng)賽的特點(diǎn)
2.1數(shù)學(xué)建模競(jìng)賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過(guò)程中學(xué)生可以根據(jù)自己的建模需要通過(guò)一切可以利用的資源、工具來(lái)進(jìn)行資料查閱和收集,建模比賽隊(duì)員可以根據(jù)自己的意見(jiàn)和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競(jìng)賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒(méi)有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊(duì)伍呈日益燎原之勢(shì)。1992年首屆中國(guó)數(shù)學(xué)建模大賽開(kāi)展以來(lái),其影響力與日俱增,高校和社會(huì)各界對(duì)數(shù)學(xué)建模頗為重視,參賽隊(duì)伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊(duì)在國(guó)際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績(jī)。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競(jìng)賽對(duì)學(xué)生數(shù)學(xué)知識(shí)的掌握及靈活運(yùn)用、口套表達(dá)、語(yǔ)言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時(shí)間很長(zhǎng),培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競(jìng)賽取得好成績(jī)奠定了堅(jiān)實(shí)的基礎(chǔ)。
3數(shù)學(xué)建模競(jìng)賽開(kāi)展培養(yǎng)大學(xué)生創(chuàng)新能力的效果分析
3.1學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到增強(qiáng)。數(shù)學(xué)建模競(jìng)賽的團(tuán)隊(duì)組織形式活潑自由,通常采用學(xué)生組隊(duì)模式開(kāi)展,數(shù)學(xué)建模競(jìng)賽隊(duì)伍形成一個(gè)團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國(guó)家的形象。經(jīng)過(guò)長(zhǎng)時(shí)間的培訓(xùn),對(duì)數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢(shì)和特長(zhǎng),進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個(gè)數(shù)學(xué)建模,在建模過(guò)程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢(shì)和長(zhǎng)處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過(guò)建模競(jìng)賽彰顯團(tuán)隊(duì)的合作能力和中國(guó)數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來(lái)大學(xué)生數(shù)學(xué)建模競(jìng)賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績(jī)也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識(shí)的能力得到提升。數(shù)學(xué)建模競(jìng)賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個(gè)展示。在數(shù)學(xué)建模競(jìng)賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識(shí)儲(chǔ)備,還需要具備清晰的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力。同時(shí)要有機(jī)智的臨場(chǎng)發(fā)揮能力和應(yīng)變能力,不怯場(chǎng)、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對(duì)其他參賽選手和評(píng)委的提問(wèn),能組織條理性、邏輯性的語(yǔ)言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計(jì)清晰完整的傳達(dá)給評(píng)委和其他參賽選手。在這個(gè)過(guò)程中,無(wú)疑會(huì)使學(xué)生的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識(shí)的能力有一個(gè)較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競(jìng)賽對(duì)參賽學(xué)生的綜合知識(shí)和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力?梢哉f(shuō)數(shù)學(xué)建模過(guò)程中,有許多高深的知識(shí)難于理解,有的日常學(xué)習(xí)過(guò)程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢(shì)和平時(shí)培訓(xùn)中的知識(shí)積淀,通過(guò)借助大量的工具書(shū)及參考資料,加上團(tuán)隊(duì)的.理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識(shí),無(wú)疑這對(duì)學(xué)生的自學(xué)能力培養(yǎng)是一個(gè)很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識(shí)的過(guò)程是枯燥乏味的,需要長(zhǎng)久的耐力和信心,無(wú)疑這對(duì)學(xué)生的堅(jiān)毅不畏難的品質(zhì)是一個(gè)很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過(guò)艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問(wèn)題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問(wèn)題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
4結(jié)語(yǔ)
綜上所述,高校學(xué)生數(shù)學(xué)建模競(jìng)賽的開(kāi)展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊(duì)合作能力、競(jìng)爭(zhēng)能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開(kāi)展數(shù)學(xué)建模競(jìng)賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵(lì)全體學(xué)生參與數(shù)學(xué)建模競(jìng)賽,通過(guò)競(jìng)賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
參考文獻(xiàn):
[1]趙剛.高校數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)探究[J].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對(duì)培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[J].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競(jìng)賽對(duì)高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[J].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)的思考[J].中國(guó)校外教育,20xx(12).
數(shù)學(xué)建模論文模板11
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來(lái),各所高校的教師們都在努力的想辦法、找對(duì)策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問(wèn)題驅(qū)動(dòng)式的教學(xué)方法和基于PBL的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級(jí)中已經(jīng)實(shí)際應(yīng)用過(guò)幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識(shí)點(diǎn)太多,記不住了),而對(duì)思維的要求卻提高了。對(duì)大學(xué)生來(lái)說(shuō),每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長(zhǎng)久下去學(xué)生們會(huì)覺(jué)得很辛苦,很有壓力,會(huì)出現(xiàn)抱怨。筆者碰到過(guò)這樣的學(xué)生,剛開(kāi)始時(shí),興致勃勃,雄心萬(wàn)丈,可到后來(lái)興趣索然,馬虎應(yīng)對(duì)。怪學(xué)生嗎?誠(chéng)然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對(duì)學(xué)生提的這些問(wèn)題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會(huì)用到高等數(shù)學(xué)的知識(shí),那我學(xué)高等數(shù)學(xué)的目的`何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過(guò)一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對(duì)付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問(wèn)題不及時(shí)解決,時(shí)間長(zhǎng)了一定會(huì)影響到大學(xué)生對(duì)高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會(huì)產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽(tīng)到自己高等數(shù)學(xué)考過(guò)了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對(duì)其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問(wèn)題反推解決問(wèn)題時(shí)我們需要的高等數(shù)學(xué)知識(shí)
有這樣一個(gè)實(shí)際問(wèn)題:報(bào)童每天清晨從報(bào)社購(gòu)進(jìn)報(bào)紙零售,晚上將沒(méi)賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購(gòu)進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有a>b>c。這就是說(shuō),報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購(gòu)進(jìn)的報(bào)紙?zhí),那么?huì)不夠賣,就會(huì)少賺錢;如果每天購(gòu)進(jìn)的報(bào)紙?zhí),那么?huì)賣不完,將要賠錢。請(qǐng)為報(bào)童規(guī)劃一下,他該如何確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來(lái)反推該問(wèn)題涉及到的高等數(shù)學(xué)的知識(shí):首先,通過(guò)分析題目可知,問(wèn)題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問(wèn)題的知識(shí)我們?cè)缇驼莆樟,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
其次,假設(shè)每天購(gòu)進(jìn)n份報(bào)紙,G(n)為報(bào)童購(gòu)進(jìn)n份報(bào)紙時(shí)的平均收入函數(shù),再假設(shè)每天的報(bào)紙需求量r是隨機(jī)的,此時(shí)r和n的關(guān)系有三種r>n,r
二、利用高等數(shù)學(xué)的解決實(shí)際問(wèn)題
由前面的假設(shè)可知,每天購(gòu)進(jìn)n份報(bào)紙,每天的報(bào)紙需求量為r份時(shí),報(bào)童每天的平均收入為G(n)元。如果這天的需求量r≤n,則他售出r份,退回n-r份;假如這天的需求量r>n,則n份報(bào)紙全部售光。因?yàn)槿招枨罅縭是隨機(jī)的,所以我們必須求出每天賣出r份的概率
f(r)[4]。如果求出了f(r),那么
G(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來(lái)求f(r),假定報(bào)童已經(jīng)通過(guò)自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
根據(jù)概率論中離散型隨機(jī)變量的連續(xù)化知識(shí)[4],我們可以將r視為連續(xù)型的隨機(jī)變量,這樣更便于分析和計(jì)算。利用最小二乘擬合[5],可以將f(r)轉(zhuǎn)化為連續(xù)型隨機(jī)變量r的概率密度函數(shù)p(r),那么(1)式變成
G(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過(guò)上面的分析,可知實(shí)際問(wèn)題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得G(n)最大。
研究表明G(n)是一個(gè)在閉區(qū)間上連續(xù)的積分上限函數(shù),由閉區(qū)間上連續(xù)函數(shù)的性質(zhì)可知G(n)的最大、最小值一定存在,而且最大、最小值一定在函數(shù)G(n)的駐點(diǎn)(也即使得=0的n)。計(jì)算可得
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識(shí)一定可以求出n。也即可以確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問(wèn)題,讓學(xué)生學(xué)會(huì)思考,給他們提供創(chuàng)造成就感的機(jī)會(huì)
通過(guò)上面碰到的實(shí)際問(wèn)題,可以很容易地說(shuō)服同學(xué)們靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^(guò)實(shí)際問(wèn)題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問(wèn)題(哪怕是很小的問(wèn)題),也需要大量的高等數(shù)學(xué)知識(shí)的儲(chǔ)備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡(jiǎn)單、直接,勝過(guò)老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問(wèn)題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們?cè)诮鉀Q實(shí)際問(wèn)題中學(xué)會(huì)思考,掌握知識(shí),提高能力。
通過(guò)訓(xùn)練后,碰到實(shí)際問(wèn)題,同學(xué)們會(huì)自然的想到我們的教學(xué)方法:(1)這些實(shí)際問(wèn)題涉及到的高等數(shù)學(xué)知識(shí)?那些自己掌握了,那些還沒(méi)有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識(shí)點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問(wèn)題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問(wèn)題,能否用高等數(shù)學(xué)的知識(shí)去解決?通過(guò)思考、分析、解決這些問(wèn)題,學(xué)生們會(huì)有一種創(chuàng)造創(chuàng)新的成就感,會(huì)愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會(huì)大大提高了。
數(shù)學(xué)建模論文模板12
一、將數(shù)學(xué)建模融入醫(yī)科高等教學(xué)的意義
(一)提高課堂教學(xué)的質(zhì)量
在數(shù)學(xué)學(xué)科自身特質(zhì)的局限下,數(shù)學(xué)課堂很難引起學(xué)生們的興趣,因?yàn)榻處熱槍?duì)相關(guān)公式的講解和定理的介紹,只能讓學(xué)生處于被動(dòng)的接受狀態(tài)中,無(wú)法產(chǎn)生較強(qiáng)的互動(dòng)性和交流,更不便于通過(guò)快速理解而記憶.由于數(shù)學(xué)建模存在著實(shí)際應(yīng)用價(jià)值,且在教學(xué)環(huán)節(jié)可以營(yíng)造出生動(dòng)的課堂氛圍,所以將其引入數(shù)學(xué)課堂,可以起到提升學(xué)生學(xué)習(xí)興趣,提高課堂教學(xué)質(zhì)量的作用.當(dāng)數(shù)學(xué)知識(shí)從單純的數(shù)字和符號(hào),變成具有實(shí)際意義的信息,則學(xué)生的接受度顯然更高,也更便于理解和記憶.多人參與的數(shù)學(xué)建模環(huán)節(jié),交流與互動(dòng)性也得到了增強(qiáng).此外,歸納法和演繹法等數(shù)學(xué)方法在數(shù)學(xué)建模中的應(yīng)用,可以潛移默化的增強(qiáng)學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí).
(二)培養(yǎng)學(xué)生分析、解決實(shí)際問(wèn)題的能力
數(shù)學(xué)建模針對(duì)現(xiàn)實(shí)問(wèn)題的價(jià)值和作用,需要建立在合理數(shù)學(xué)模型的基礎(chǔ)之上.模型的準(zhǔn)備、假設(shè)、構(gòu)成與求解、應(yīng)用一系列步驟,需要學(xué)生善于思考,積極的將數(shù)學(xué)知識(shí)融入其中,把握問(wèn)題的矛盾,透過(guò)假設(shè)來(lái)達(dá)成最終的實(shí)踐目的.在此背景下,無(wú)疑可以強(qiáng)化學(xué)生分析和解決實(shí)際問(wèn)題的綜合能力.
(三)培養(yǎng)學(xué)生的創(chuàng)新能力和協(xié)作精神
數(shù)學(xué)建模沒(méi)有唯一的答案,是一個(gè)開(kāi)放性的問(wèn)題,在使用者所采用數(shù)學(xué)知識(shí)相異思維模式不同的情況下,最終形成的方法和路徑也會(huì)存在差異.所以,想象力和創(chuàng)造力在建模過(guò)程中存在著重要的價(jià)值.包括簡(jiǎn)化理解問(wèn)題、選擇數(shù)學(xué)工具問(wèn)題、設(shè)置合理結(jié)構(gòu)問(wèn)題、強(qiáng)化應(yīng)用性問(wèn)題等等,一系列的問(wèn)題都需要使用者能夠大膽創(chuàng)新,勇于探索,以打破常規(guī)的思路,構(gòu)建更加合理的數(shù)學(xué)建模模型.一般情況下,一個(gè)人無(wú)法完成數(shù)學(xué)建模的整個(gè)流程,需要幾個(gè)人共同參與到建模的各個(gè)環(huán)節(jié),了解背景、構(gòu)建模型和模擬輔助求解等等.在多人共同完成建模的過(guò)程中,思想上、語(yǔ)言上會(huì)有大量的交流,智慧的交融有助于開(kāi)拓學(xué)生的思路,強(qiáng)化團(tuán)隊(duì)協(xié)作精神.
二、將數(shù)學(xué)建模融入醫(yī)科高等教學(xué)的方法
(一)講解定理公式時(shí)聯(lián)系實(shí)際
從客觀事物的空間關(guān)系或數(shù)量中抽象出的數(shù)學(xué)概念,其定理和概念與實(shí)際需求有著密切的關(guān)聯(lián).但是在醫(yī)科高等數(shù)學(xué)教學(xué)環(huán)節(jié),由于課時(shí)緊張的問(wèn)題,往往會(huì)引起前因后果的教學(xué)疏忽情況,直接讓學(xué)生去理解記憶定理和計(jì)算證明,顯然無(wú)法起到良好的教學(xué)成果.因此,在教學(xué)的環(huán)節(jié),如果能夠融入更多的數(shù)學(xué)思想、思想背景,則可以起到事半功倍的'效果.舉例說(shuō)明,在積分計(jì)算教學(xué)環(huán)節(jié)中,采用多媒體設(shè)施,以動(dòng)畫(huà)的形式來(lái)演示曲邊梯形的近似、取極限、分割和求和過(guò)程,重點(diǎn)突出積分計(jì)算中的以直代曲、化整為零的數(shù)學(xué)方法和思想,打破單純的說(shuō)教模式,讓學(xué)生在生動(dòng)的演示中加深記憶,最后學(xué)以致用.
(二)結(jié)合案例教學(xué)
作為數(shù)學(xué)建模中的常規(guī)手段,案例教學(xué)可以透過(guò)啟發(fā)、討論和講解等多個(gè)方式,強(qiáng)化學(xué)生的思考積極性,提升教學(xué)效果.之后再次透過(guò)實(shí)際案例,比如非典型肺炎的爆發(fā),來(lái)測(cè)試數(shù)學(xué)模型的可行性,以此驗(yàn)證準(zhǔn)確認(rèn)識(shí)疾病傳播規(guī)律的重要價(jià)值.此外,還可以采取課堂結(jié)合數(shù)學(xué)建模的方法,結(jié)合藥物動(dòng)力學(xué)課程和藥物房室模型,讓學(xué)生學(xué)習(xí)藥物在人體內(nèi)的循環(huán)、作用情況,真正的認(rèn)識(shí)模型建立對(duì)于藥物設(shè)計(jì)、評(píng)價(jià)和改進(jìn)的重要應(yīng)用意義.在此背景下,學(xué)生的眼界得到了開(kāi)拓,同時(shí)學(xué)習(xí)的新鮮感和興趣也會(huì)與日俱增.
(三)使用工具軟件,靈活安排課后練習(xí)
隨著現(xiàn)代計(jì)算機(jī)、網(wǎng)絡(luò)信息技術(shù)的快速發(fā)展,數(shù)學(xué)建模也可以借助計(jì)算機(jī)的科技能力,完善和普及軟件的應(yīng)用,解決數(shù)學(xué)建模中的一些特殊難題.在計(jì)算機(jī)的幫助下,數(shù)學(xué)建模的使用范圍和效率都得到了一定程度的提升.為了強(qiáng)化教學(xué)質(zhì)量,醫(yī)科高等數(shù)學(xué)老師可以在課堂教學(xué)后,布置一定的課后練習(xí)作業(yè),讓學(xué)生自由組隊(duì),在之后的課堂上匯報(bào)研究成果和問(wèn)題解決報(bào)告.這種方式不僅可以強(qiáng)化學(xué)生之間的思想交流,還能夠讓學(xué)生參與到教學(xué)環(huán)節(jié),提升學(xué)習(xí)熱情和興趣.
綜上所述,醫(yī)科高等數(shù)學(xué)教學(xué)得到數(shù)學(xué)建模滲透后,有助于提升學(xué)生的創(chuàng)新能力、團(tuán)隊(duì)協(xié)作精神以及實(shí)際應(yīng)用能力.在新時(shí)期發(fā)展背景下,教育改革需要各個(gè)學(xué)科作出及時(shí)的調(diào)整,為培養(yǎng)符合時(shí)代發(fā)展需求的人才做好充足的準(zhǔn)備.在此基礎(chǔ)上,所有的教師們,都應(yīng)該積極探索靈活的教學(xué)模式.
數(shù)學(xué)建模論文模板13
走美杯”是"走進(jìn)美妙的數(shù)學(xué)花園"的簡(jiǎn)稱。
"走進(jìn)美妙的數(shù)學(xué)花園"中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆"走進(jìn)美妙的數(shù)學(xué)花園"中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響。 "走進(jìn)美妙的數(shù)學(xué)花園"中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過(guò)"趣味數(shù)學(xué)解題技能展示"、"數(shù)學(xué)建模小論文答辯"、"數(shù)學(xué)益智游戲"、"團(tuán)體對(duì)抗賽"等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。 著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞"數(shù)學(xué)好玩"和"走進(jìn)美妙的.數(shù)學(xué)花園",大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺(jué)地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從"學(xué)數(shù)學(xué)"到"用數(shù)學(xué)"過(guò)程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。
"走美"活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。
“走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注。客觀地說(shuō)“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。
1、活動(dòng)對(duì)象
全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生
2、總成績(jī)計(jì)算
總成績(jī)=筆試成績(jī)x70%+數(shù)學(xué)小論文x30%
筆試獲獎(jiǎng)率:
一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。
3、筆試時(shí)間
每年3月上、中旬。
報(bào)名截止時(shí)間:每年12月底。
走美杯比賽流程
1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開(kāi)始組織工作
2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫《報(bào)名表》
3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)
4、全國(guó)"走進(jìn)美妙的數(shù)學(xué)花園"趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)
5、學(xué)生撰寫數(shù)學(xué)建模小論文
6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書(shū)
7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。
8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文
9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單
10、全國(guó)總論壇和表彰活動(dòng)
數(shù)學(xué)建模論文模板14
椅子能在不平的地面上放穩(wěn)
把椅子往不平的地面上一放,通常只有三只腳著地,放不穩(wěn),然而只要稍挪動(dòng)幾次,就可以四腳著地,放穩(wěn)了。下面用數(shù)學(xué)語(yǔ)言證明。
一、 模型假設(shè)
對(duì)椅子和地面都要作一些必要的假設(shè):
1、 椅子四條腿一樣長(zhǎng),椅腳與地面接觸可視為一個(gè)點(diǎn),四腳的連線呈正方形。
2、 地面高度是連續(xù)變化的,沿椅子的任何方向都不會(huì)出現(xiàn)間斷(沒(méi)有像臺(tái)階那樣的情況),即地面可視為數(shù)學(xué)上的連續(xù)曲面。
3、 對(duì)于椅腳的間距和椅子腳的長(zhǎng)度而言,地面是相對(duì)平坦的,使椅子在任何位置至少有三只同時(shí)著地。
二、模型建立
中心問(wèn)題是數(shù)學(xué)語(yǔ)言表示四只同時(shí)著地的條件、結(jié)論。首先用變量表示椅子的位置,由于椅腳的連線呈正方形,以中心為對(duì)稱點(diǎn),正方形繞中心的旋轉(zhuǎn)正好代表了椅子的位置的改變,于是可以用旋轉(zhuǎn)角度80這一變量來(lái)表示椅子的位置。
其次要把椅腳著地用數(shù)學(xué)符號(hào)表示出來(lái),如果用某個(gè)變量表示椅腳與地面的豎直距離,當(dāng)這個(gè)距離為0時(shí),表示椅腳著地了。椅子要挪動(dòng)位置說(shuō)明這個(gè)距離是位置變量的函數(shù)。
由于正方形的中心對(duì)稱性,只要設(shè)兩個(gè)距離函數(shù)就行了,記A、C兩腳與地面距離之和為f,B、D兩腳與地面距離之和為g,顯然f、g0,由假設(shè)2知f、g都是連續(xù)函數(shù),再由假設(shè)3知f、g至少有一個(gè)為0。當(dāng)0時(shí),不妨設(shè)g0,f0,這樣改變椅子的位置使四只同時(shí)著地,就歸結(jié)為如下命題:
命題 已知f、g是的`連續(xù)函數(shù),對(duì)任意,f*g=0,且g00,f00,則存在0,使g0f00。
三、模型求解
將椅子旋轉(zhuǎn)900,對(duì)角線AC和BD互換,由g00,f00可知g20,f20。令hgf,則h00,h20,由f、g的連續(xù)性知h也是連續(xù)函數(shù),由零點(diǎn)定理,則存在0002使h00,g0f0,由g0*f00,所以g0f00。
四、評(píng) 注
模型巧妙在于用已知的元變量表示椅子的位置,用的兩個(gè)函數(shù)表示椅子四腳與地面的距離。利用正方形的中心對(duì)稱性及旋轉(zhuǎn)900并不是本質(zhì)的,同學(xué)們可以考慮四腳呈長(zhǎng)方形的情形。
數(shù)學(xué)建模論文模板15
1數(shù)學(xué)建模競(jìng)賽培訓(xùn)過(guò)程中存在的問(wèn)題
1.1學(xué)生數(shù)學(xué)、計(jì)算機(jī)基礎(chǔ)薄弱,參賽學(xué)生人數(shù)少
以我校理學(xué)院為例,數(shù)學(xué)專業(yè)是本校開(kāi)設(shè)最早的專業(yè),面向全國(guó)28?jìng)(gè)省、市、自治區(qū)招生,包括內(nèi)地較發(fā)達(dá)地區(qū)的學(xué)生、貧困地區(qū)(包括民族地區(qū))的學(xué)生,招收的學(xué)生數(shù)學(xué)基礎(chǔ)水平參差不齊.內(nèi)地較發(fā)達(dá)地區(qū)的學(xué)生由于所處地區(qū)的經(jīng)濟(jì)文化條件較好,教育水平較高,高考數(shù)學(xué)成績(jī)普遍高于民族地區(qū)的學(xué)生.民族地區(qū)由于所處地區(qū)經(jīng)濟(jì)文化較落后,中小學(xué)師資力量嚴(yán)重不足,使得少數(shù)民族學(xué)生數(shù)學(xué)基礎(chǔ)薄弱,對(duì)數(shù)學(xué)學(xué)習(xí)普遍抱有畏難情緒,從每年理學(xué)院新生入學(xué)申請(qǐng)轉(zhuǎn)系的同學(xué)較多可以窺見(jiàn)一斑.雖然學(xué)校每年都組織學(xué)生參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,但人數(shù)都不算多.從專業(yè)來(lái)看,參賽學(xué)生主要以數(shù)學(xué)系和計(jì)算機(jī)系的學(xué)生為主,間有化學(xué)、生科、醫(yī)學(xué)等理工科學(xué)生,文科學(xué)生則相對(duì)更少.理工科類的學(xué)生基本功比較扎實(shí),他們?cè)趨①愡^(guò)程中起到了重要作用.文科學(xué)生數(shù)學(xué)和計(jì)算機(jī)功底大多薄弱,更多的只是一種參與.從年級(jí)來(lái)看,參賽學(xué)生以大二的學(xué)生居多;大一的學(xué)生已學(xué)的數(shù)學(xué)和計(jì)算機(jī)課程有限,基本功還有些欠缺;大三、大四的學(xué)生忙著考研和找工作,對(duì)數(shù)學(xué)建模競(jìng)賽興趣不大.從參賽的目的來(lái)看,有20%左右的學(xué)生是非常希望通過(guò)數(shù)學(xué)建模提高自己的綜合能力,他們一般能堅(jiān)持到最后;還有50%的學(xué)生抱著試試看的態(tài)度參加培訓(xùn),想鍛煉但又怕學(xué)不懂,覺(jué)得可以堅(jiān)持就堅(jiān)持,不能則中途放棄;剩下的30%的學(xué)生則抱著好奇好玩的態(tài)度,他們大多早早就出局了.學(xué)生的參賽積極性不高,是制約數(shù)學(xué)建模教學(xué)及競(jìng)賽有效開(kāi)展的不利因素.
1.2無(wú)專職數(shù)學(xué)建模培訓(xùn)教師,培訓(xùn)教師水平有限,培訓(xùn)方法落后
數(shù)學(xué)建模的培訓(xùn)教師主要由理學(xué)院選派數(shù)學(xué)老師臨時(shí)組成,沒(méi)有專職從事數(shù)學(xué)建模的教師.由于學(xué)校擴(kuò)招,學(xué)生人數(shù)多,教師人數(shù)少,數(shù)學(xué)教師所承擔(dān)的專業(yè)課和公共課課程多,授課任務(wù)重;備課、授課、批改作業(yè)占用了教師的大部分工作時(shí)間,并且還要完成相應(yīng)的科研任務(wù).而參加數(shù)學(xué)建模教學(xué)及競(jìng)賽培訓(xùn)等工作需要花費(fèi)很多時(shí)間和精力,很多老師都沒(méi)有時(shí)間和精力去認(rèn)真從事數(shù)學(xué)建模的教學(xué)工作.培訓(xùn)教師隊(duì)伍整體素質(zhì)不夠強(qiáng)、能力欠缺,指導(dǎo)起學(xué)生來(lái)也不是那么得心應(yīng)手,且從事數(shù)學(xué)建模教學(xué)的老師每年都在調(diào)整,不利于經(jīng)驗(yàn)的積累.另外,學(xué)校對(duì)參與數(shù)學(xué)建模教學(xué)及競(jìng)賽培訓(xùn)的教師的鼓勵(lì)措施還不是十分到位和吸引人,培訓(xùn)教師對(duì)數(shù)學(xué)建模相關(guān)的工作熱情不夠,缺乏奉獻(xiàn)精神.在2011年以前,數(shù)學(xué)建模培訓(xùn)主要采用教師授課的方式進(jìn)行,但各位老師授課的內(nèi)容互不聯(lián)系.比如說(shuō)上概率論的老師就講概率論的內(nèi)容,上常微分方程的老師就講常微分的內(nèi)容.學(xué)生學(xué)習(xí)了這些知識(shí),不知道有什么用,怎么用,不能將這些知識(shí)聯(lián)系起來(lái)轉(zhuǎn)化為數(shù)學(xué)建模的能力.這中間缺少了很重要的一個(gè)環(huán)節(jié),就是沒(méi)有進(jìn)行真題實(shí)訓(xùn).結(jié)果就是學(xué)生既沒(méi)有運(yùn)用這些知識(shí)構(gòu)建數(shù)學(xué)模型的能力,也談不上數(shù)學(xué)建模論文寫作的技巧.雖然學(xué)校年年都組織學(xué)生參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,但結(jié)果卻不盡如人意,獲獎(jiǎng)等次不高,獲獎(jiǎng)數(shù)量不多.
1.3學(xué)校重視程度不夠,相關(guān)配套措施還有待完善
任何一項(xiàng)工作離開(kāi)了學(xué)校的支持,都是不可能開(kāi)展得好的,數(shù)學(xué)建模也不例外.在前些年,數(shù)學(xué)建模并沒(méi)有引起足夠的重視,學(xué)校盼望出成績(jī)但是結(jié)果并不理想,對(duì)老師和學(xué)生的信心不足.由于經(jīng)費(fèi)緊張,并未專門對(duì)數(shù)學(xué)建模安排實(shí)驗(yàn)室,圖書(shū)資料很少,學(xué)生用電腦和查資料不方便,沒(méi)有學(xué)習(xí)氛圍.每年數(shù)學(xué)建模競(jìng)賽主要由分管教學(xué)的副院長(zhǎng)兼任組長(zhǎng),沒(méi)有相應(yīng)專職的負(fù)責(zé)人,培訓(xùn)教師去參加數(shù)學(xué)建模相關(guān)交流會(huì)議和學(xué)習(xí)的機(jī)會(huì)很少.學(xué)校和二級(jí)學(xué)院對(duì)參加數(shù)學(xué)建模教學(xué)、培訓(xùn)的老師獎(jiǎng)勵(lì)很少,學(xué)生則幾乎沒(méi)有.在課程的`開(kāi)設(shè)上也未引起重視,雖然理學(xué)院早在1997年就將數(shù)學(xué)實(shí)驗(yàn)和數(shù)學(xué)建模課列為專業(yè)必修課,但非數(shù)學(xué)專業(yè)只是近幾年才開(kāi)始列為公選課開(kāi)設(shè),且選修率低.
2針對(duì)存在問(wèn)題所采取的相應(yīng)措施
2.1擴(kuò)大宣傳,重視數(shù)學(xué)和計(jì)算機(jī)公選課開(kāi)設(shè),舉辦數(shù)學(xué)建模學(xué)習(xí)討論班
最近兩年,學(xué)院組建了數(shù)學(xué)建模協(xié)會(huì),負(fù)責(zé)數(shù)學(xué)建模的宣傳和參賽隊(duì)員的海選,通過(guò)各種方式擴(kuò)大了對(duì)數(shù)學(xué)建模的宣傳和影響,安排數(shù)學(xué)任課教師鼓勵(lì)數(shù)學(xué)基礎(chǔ)不錯(cuò)的學(xué)生參賽.同時(shí)邀請(qǐng)重點(diǎn)大學(xué)具有豐富培訓(xùn)經(jīng)驗(yàn)的老師來(lái)做數(shù)學(xué)建模專題講座,交流經(jīng)驗(yàn).學(xué)院重視數(shù)學(xué)專業(yè)的基礎(chǔ)課程、核心課程的教學(xué),選派經(jīng)驗(yàn)豐富的老教師、青年骨干教師擔(dān)任主講,隨時(shí)抽查教學(xué)質(zhì)量,教學(xué)效果.嚴(yán)抓考風(fēng)學(xué)風(fēng),對(duì)考試作弊學(xué)生絕不姑息;學(xué)生上課遲到、早退、曠課一律嚴(yán)肅處理.通過(guò)這些舉措,學(xué)生學(xué)習(xí)態(tài)度明顯好轉(zhuǎn),數(shù)學(xué)能力慢慢得到提高.學(xué)校有意識(shí)在大一新生中開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn)、數(shù)學(xué)建模和相關(guān)計(jì)算機(jī)公選課,讓對(duì)數(shù)學(xué)有興趣的學(xué)生能多接觸這方面的知識(shí),減少距離感.選用的教材內(nèi)容淺顯而有趣味,主要目的是讓同學(xué)們感受到數(shù)學(xué)建模并非高不可攀,數(shù)學(xué)是有用的,增加學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和參加數(shù)學(xué)建模競(jìng)賽的可能性.為了解決學(xué)生學(xué)習(xí)數(shù)學(xué)建模過(guò)程中的遇到的困難,學(xué)院組織老師、學(xué)生參加數(shù)學(xué)建模周末討論班,老師就學(xué)生學(xué)習(xí)過(guò)程中遇到的普遍問(wèn)題進(jìn)行講解,學(xué)生分小組相互討論,盡量不讓問(wèn)題堆積,影響后續(xù)學(xué)習(xí)積極性.通過(guò)這些措施,參賽學(xué)生的人數(shù)比以往有了大的改觀,參賽過(guò)程中退賽的學(xué)生越來(lái)越少,參賽過(guò)程中的主動(dòng)性也越來(lái)越明顯.
2.2成立數(shù)學(xué)建模指導(dǎo)教師組,分批培養(yǎng)培訓(xùn)教師,改進(jìn)培訓(xùn)方法
近年來(lái),學(xué)院開(kāi)始重視對(duì)數(shù)學(xué)建模培訓(xùn)教師的梯隊(duì)建設(shè),成立了數(shù)學(xué)建模指導(dǎo)教師組.把培訓(xùn)教師分批送出去進(jìn)修,參加交流會(huì)議,學(xué)習(xí)其它高校的經(jīng)驗(yàn),并安排老教師帶新教師,培訓(xùn)教師隊(duì)伍越來(lái)越穩(wěn)定、壯大.從去年開(kāi)始,理學(xué)院組織學(xué)生進(jìn)行了為期一個(gè)月的暑期數(shù)學(xué)建模真題實(shí)訓(xùn),從8月初到8月底,培訓(xùn)共分為7輪.學(xué)生首先進(jìn)行三天封閉式真題訓(xùn)練———其次答辯———最后交流討論.效果明顯,學(xué)生的數(shù)學(xué)建模能力普遍得到了提高,學(xué)習(xí)積極性普遍高漲.9月份順利參加了全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽.從競(jìng)賽結(jié)果來(lái)看,比以前有了比較大的進(jìn)步,不管是獲獎(jiǎng)的等次還是獲獎(jiǎng)的人數(shù)上都取得了歷史性突破.有了這些可喜的變化,教師和學(xué)生的積極性都得到了提高,對(duì)以后的數(shù)學(xué)建模教學(xué)和培訓(xùn)工作將起著極大的促進(jìn)作用.除了這種集訓(xùn),今后,數(shù)學(xué)建模還需要加強(qiáng)平時(shí)的教學(xué)和培訓(xùn)工作.
2.3學(xué)校逐漸重視,加大了相關(guān)投入,完善了激勵(lì)措施
最近幾年,學(xué)校加大了對(duì)數(shù)學(xué)建模教學(xué)和培訓(xùn)工作的相關(guān)投入和鼓勵(lì)措施.安排了專門的數(shù)學(xué)建模實(shí)驗(yàn)室,配備了學(xué)院最先進(jìn)的電腦、打印機(jī)等設(shè)備,購(gòu)買了數(shù)學(xué)建模相關(guān)的書(shū)籍.劃撥了數(shù)學(xué)建模教學(xué)和培訓(xùn)專項(xiàng)經(jīng)費(fèi).雖然數(shù)學(xué)建模教學(xué)還沒(méi)有計(jì)入教學(xué)工作量,但已經(jīng)考慮計(jì)入職稱評(píng)定的相關(guān)工作量中,對(duì)參加數(shù)學(xué)建模教學(xué)和培訓(xùn)的老師減少了基本的教學(xué)工作量,使他們有更多的時(shí)間和精力投入到數(shù)學(xué)建模的相關(guān)工作中去.對(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽獲獎(jiǎng)的老師和學(xué)生的獎(jiǎng)勵(lì)額度也比以前有了很大的提高,老師和學(xué)生的積極性得到了極大的提高.
3結(jié)束語(yǔ)
對(duì)我們這類院校而言,最重要的數(shù)學(xué)建模賽事就是一年一度的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽了.競(jìng)賽結(jié)果大體可以衡量老師和學(xué)生的付出與收獲,但不是絕對(duì)的,教育部組織這項(xiàng)賽事的初衷主要是為了促進(jìn)各個(gè)院校數(shù)學(xué)建模教學(xué)的有效開(kāi)展.如果過(guò)分的看重獲獎(jiǎng)等次和數(shù)量,對(duì)學(xué)校的數(shù)學(xué)建模教學(xué)和組織工作都是一種傷害.參賽的過(guò)程對(duì)學(xué)生而言,肯定是有益的,絕大多數(shù)參加過(guò)數(shù)學(xué)建模競(jìng)賽的學(xué)生都認(rèn)為這個(gè)過(guò)程很重要.這個(gè)過(guò)程可能是四年的大學(xué)學(xué)習(xí)過(guò)程中體會(huì)最深的,它用枯燥的理論知識(shí)解決了活生生的現(xiàn)實(shí)中存在的問(wèn)題,雖然這種解決還有部分的理想化.由于我校地處偏遠(yuǎn)山區(qū),教育經(jīng)費(fèi)相對(duì)緊張,投入不可能跟重點(diǎn)院校的水平比,只能按照自身實(shí)際來(lái).只要學(xué)校、老師、學(xué)生三方都重視并積極參與這一賽事,數(shù)學(xué)建;顒(dòng)就能開(kāi)展的更好.
【數(shù)學(xué)建模論文】相關(guān)文章:
數(shù)學(xué)建模論文模板07-22
簡(jiǎn)單的數(shù)學(xué)建模小論文09-02
數(shù)學(xué)建模論文模板15篇[通用]07-21
數(shù)學(xué)建模優(yōu)秀論文(通用10篇)08-02
數(shù)據(jù)建模論文格式06-29